





MEASUREMENT OF EXHAUST EMISSIONS FROM DIESEL-POWERED FORKLIFTS DURING OPERATIONS IN AMMUNITION STORAGE MAGAZINES

May 1984

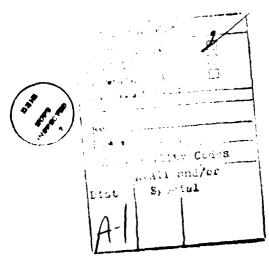






A STATE OF THE STA

# CONTENTS


|                                          |                                                                                                                                   | Page                             |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Figures<br>Tables<br>Summary<br>Acknowle | edgment                                                                                                                           | iii<br>iv<br>v<br>viii           |
| I. Int                                   | roduction                                                                                                                         | 1                                |
|                                          | Objectives<br>Scope of work                                                                                                       | 1 2                              |
| II. Inv                                  | vestigation vestigation                                                                                                           | 4                                |
|                                          | Operation of forklift trucks in ammunition magazines Components of diesel exhaust Sampling and analytical methods Data collection | on storage<br>4<br>5<br>10<br>18 |
| III. Res                                 | sults                                                                                                                             | 19                               |
|                                          | Breathing zone samples<br>Continuous air monitoring<br>Limitations of the Data                                                    | 22<br>26<br>42                   |
| IV. Cor                                  | nclusions                                                                                                                         | 44                               |
|                                          | Characterization of diesel forklift impact magazine air quality Comparison on personnel exposures and mag                         | 44<br>gazine                     |
|                                          | air quality with OSHA permissible exposu                                                                                          | 47                               |
|                                          | Comparison of forklift emission levels                                                                                            | 53                               |
| V. Red                                   | commendations                                                                                                                     | 55                               |
| Referenc                                 | ces                                                                                                                               | 57                               |
| <b>Appe</b> ndi;                         | ĸ                                                                                                                                 |                                  |
|                                          | A Sampling Procedures and Analytical Med<br>B Continuous Air Monitoring Data<br>C Statistical Analysis                            | thods A-1<br>B-1<br>C-1          |

# FIGURES

| Number |                                                                                                             | Page |
|--------|-------------------------------------------------------------------------------------------------------------|------|
| 1      | Two Model Scenarios for the Operation and<br>Movement of Forklift Trucks in Ammunition<br>Storage Magazines | 6    |
| 2      | Sampling System for Continuous Monitors                                                                     | 14   |
| 3      | Time-Concentration Profiles of Oxides of<br>Nitrogen During Magazine Unloading Activities                   | 28   |
| 4      | Time-Concentration Profiles of Carbon Monoxide<br>During Magazine Unloading Activities                      | 29   |
| 5      | Time-Concentration Profiles of Sulfur Dioxide During Magazine Unloading Activities                          | 30   |
| 6      | Time-Concentration Profiles of Hydrocarbons<br>During Magazine Unloading Activities                         | 31   |
| 7      | Time-Concentration Profiles of Carbon Dioxide<br>During Magazine Unloading Activities                       | 32   |
| 8      | Time-Concentration Profiles of Oxides of Nitrogen<br>During Magazine Warehousing Activities                 | 33   |
| 9      | Time-Concentration Profiles of Carbon Monoxide<br>During Magazine Warehousing Activities                    | 34   |
| 10     | Time-Concentration Profiles of Sulfur Dioxide During Magazine Warehousing Activities                        | 35   |
| 11     | Time-Concentration Profiles of Hydrocarbons<br>During Magazine Warehousing Activities                       | 36   |
| 12     | Time-Concentration Profiles of Carbon Dioxide During Magazine Warehousing Activities                        | 37   |
| 13     | Hypothetical Time-Concentration Profiles of Loading, Unloading, and Warehousing Operations                  | 46   |

# TABLES

| Number |                                                                                                         | Page |
|--------|---------------------------------------------------------------------------------------------------------|------|
| 1      | Diesel Exhaust Components Tested: Their Relevant Health Effects and Target Organs                       | 8    |
| 2      | Sampling and Analytical Methods for Determining Worker Exposures to Diesel Exhaust Components           | 12   |
| 3      | Breathing Zone Exposures During Unloading Operations                                                    | 23   |
| 4      | Breathing Zone Exposures During Warehousing Operations Using Low-Sulfur Fuel                            | 24   |
| 5      | Breathing Zone Exposures During Warehousing<br>Operations Using High-Sulfur Fuel                        | 25   |
| 6      | Summary of Indoor Air Quality During Unloading Activities                                               | 39   |
| 7      | Summary of Indoor Air Quality During Warehousing<br>Operations With Forklifts Using Low-Sulfur<br>Fuels | 40   |
| 8      | Summary of Indoor Air Quality During Warehousing<br>Operations with Forklifts Using High-Sulfur<br>Fuel | 41   |
| 9      | Exposure Limits For Diesel Exhaust Components                                                           | 49   |



#### SUMMARY

Indoor air quality was monitored in Stradley-type ammunition magazines during the use of diesel-powered forklifts to determine worker exposures to exhaust components. The monitoring took place during storage and handling operations. The primary test vehicles used during this investigation were a Still forklift powered by a Deutz (F3L912W) diesel engine and a Hyster forklift powered by a Perlins (4.2(~~) diesel engine. Both breathing zone (personal) and continuous monitoring data were collected during the operation of the two vehicles. Ambient windspeed, ambient and magazine temperature, and magazine ventilation air velocity were also monitored and recorded during the tests.

The impact of diesel exhaust on breathing zone exposures and magazine air quality was monitored for two kinds of ammunition storage and handling operations: loading/unloading operations and warehousing operations. The following exhaust components were monitored: total suspended particulates, polycyclic aromatic hydrocarbons, carbon monoxide, carbon dioxide, sulfur dioxide, nitrogen dioxide, and oxides of nitrogen, sulfuric acid as total sulfates, total hydrocarbons, and odorants.

The primary objectives of the investigation were 1) to determine the ability of the forklift operations to meet Federal Occupational Safety and Health Administration (OSHA) standards

and American Conference of Governmental Industrial Hygienist (ACGIH) exposure limits, and 2) to assess the relative "cleanliness" of the two diesel-powered test vehicles. In addition, the Army was interested in obtaining information to use as a data base for validation of a predictive model designed to estimate indoor air quality at Stradley and similarly designed ammunition magazines.

The test results indicated that the impact of diesel exhaust on workplace exposures and magazine air quality depends largely on the operations being performed. Of the two operations investigated, the warehousing operations presented the greater potential risk to the health and safety of Army personnel. A comparison of breathing zone exposures and continuous monitoring data with existing workplace standards indicates that nitrogen dioxide is the only exhaust component of those measured that presents a potentially serious health risk. Test results also indicated that the use of the Hyster/Perkins forklift during warehousing operations exposed Army personnel to nitrogen dioxide levels in excess of the ACGIH's threshold limit value (TLV) for this substance [the emission level was equal to approximately 64 percent of the OSHA permissible exposure limit (PEL)]. Although neither the PEL nor the more stringent TLV for nitrogen dioxide was exceeded during the use of the Still/Deutz forklift, the exhaust from this vehicle generated concentrations approaching the TLV.

A statistical test of the air quality data collected during warehousing operations when both low-sulfur (0.4 percent) and high-sulfur (1.02 percent) fuels were used indicated that the operation of the Still/Deutz vehicle is significantly cleaner than that of the Hyster/Perkins vehicle. The OSHA permissible exposure limits or ACGIH threshold limit values for the exhaust components measured were not exceeded during the operation of the Still/Deutz vehicle.

The severe weather conditions during the testing and their subsequent effect on engine operation and magazine ventilation prevented a final assessment of the vehicle's absolute safety.

Additional testing is proposed to arrive at better quantification of personnel exposure and magazine air quality during the use of the Still/Deutz vehicle. The main objective of the additional testing would be to monitor key exhaust components emitted from the Still/Deutz vehicle under opposite environmental conditions (i.e., lower ambient windspeeds and warmer temperatures) in an effort to complete the safety assessment of this vehicle. The additional testing would be limited to a shorter list of exhaust components (nitrogen dioxide, nitric oxide, carbon monoxide, sulfur dioxide, sulfuric acid, and possibly total suspended particulates and polycyclic aromatic hydrocarbons).

A tracer gas study designed for better characterization of magazine ventilation is also proposed.

#### ACKNOWLEDGMENT

PEDCo prepared this report for the U.S. Army Belvoir Research and Development Center (formerly MERADCOM) under Contract No. DAAK70-83-C-0133. The work effort was conducted from September 8, 1983, through April 28, 1984.

Both the planning and execution of the indoor air monitoring effort required the cooperation of a number of individuals and government agencies. It would not be possible to give adequate credit to every person who has contributed to the investigation; however, we would like to identify a few individuals and agencies who were particularly helpful. We wish to thank Mr. Steve Edwards of the Occupational Safety and Health Administration (OSHA) Laboratory, Salt Lake City, Utah, and Ms. Dawn G. Tharr of the National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio, for providing assistance in obtaining certain pieces of equipment. We also wish to thank Messrs. Tim F. Lee, Steve Moyer, and Stephen F. Sousk of Belvoir R&D Center for providing invaluable direction during the air quality testing of the diesel forklifts, and Messrs. John Sprague, Jerry Krohn, and Kevin White of the U.S. Army Defense Ammunition Center and School, whose patience and practical assistance assured a productive and timely completion of the onsite testing effort.

#### I. INTRODUCTION

The U.S. Army currently uses gasoline- and electric-powered forklift trucks on a broad scale for ammunition handling operations in both the United States and Europe. Until a recent change in regulations, only electric-powered forklifts could be used inside ammunition storage magazines. Gasoline trucks have generally been used for all operations outside the magazines because of their speed and mobility advantages over electric trucks. The need to reduce or eliminate the problems associated with supporting electric forklift use at remote locations in Europe and the need to improve the Army's ability to move large quantities of supplies rapidly prompted an investigation to determine if electric forklifts could be replaced by diesel forklifts. As part of this investigation, a program was begun to evaluate the safety of exhaust emission levels inside ammunition magazines during the movement of large quantities of ammunition with diesel-powered forklifts.

### **OBJECTIVES**

The objectives of this investigation are to acquire sufficient indoor air monitoring data to assess the exhaust emission characteristics and health hazard potential of two "low emission" diesel-powered forklift trucks: a Still forklift powered by a Deutz (F3L912W) engine and a Hyster forklift powered by a

Perkins (4.2032) engine. Specifically, the investigation is designed to determine whether these vehicles can operate safely in a partially enclosed area for an amount of time compatible with both normal and military mission requirements. To meet these objectives, PEDCo Environmental, Inc., conducted a series of indoor air monitoring tests at the U.S. Army Defense Ammunition Center and School near Savanna, Illinois. These tests evaluated the impact of exhaust emissions from diesel-powered forklift trucks on indoor air quality in Stradley-type ammunition storage magazines. The data from these air monitoring tests are to be used: 1) to determine the ability of the forklift operations to meet Federal OSHA standards, 2) to assess the relative "cleanliness" of the two test vehicles, and 3) to provide a data base from which the Belvoir R&D Center could validate a predictive model designed to estimate indoor air quality at Stradley and similarly designed ammunition magazines.

## SCOPE OF WORK

The scope of work for this investigation covers the following tasks:

- a) Become familiar with the use of a forklift truck during operations in ammunition storage magazines.
- b) Generate a list of exhaust components to be sampled and explain why each should be monitored.
- c) Develop a detailed test plan for measuring and analyzing each of the specified diesel exhaust components. Determine the type of test to be used; procedures and techniques for taking air samples; and the methodology, procedures, and equipment to be used for analysis and characterization of the samples taken.

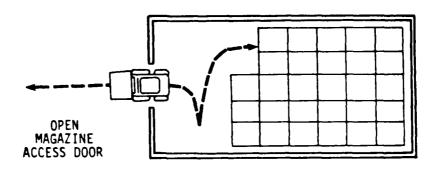
Marin Marin Barrell

- d) Conduct indoor air quality monitoring tests during simulated ammunition handling operations at two magazines at the U.S. Army Defense Ammunition Center and School near Savannah, Illinois.
- e) Analyze the indoor air quality data obtained during the test and, where applicable, compare it with Federal OSHA permissible exposure limits.
- f) Provide technical input that can enable the Army to determine whether a diesel-powered forklift truck, based on its emission output, is suitable for operations in ammunition storage magazines.

### 11. INVESTIGATION

## OPERATION OF FORKLIFT TRUCKS IN AMMUNITION STORAGE MAGAZINES

Two model scenarios are presented to characterize the operation and movement of forklift trucks in ammunition storage magazines. The first, which is described as a loading/unloading operation, is characterized by the movement of supplies in and out of a magazine. The second, which is described as a ware-housing operation, involves the movement or rearranging of supplies within a magazine.


The loading/unloading operation is typified by the movement of supplies out of the magazine to waiting transport vehicles or into the magazine from the same vehicles. The activity of a forklift truck during loading/unloading operations can be classified into three modes: 1) movement while empty, 2) movement under loaded conditions, and 3) activities involving load transfer. During a loading/unloading operation the three modes are each performed once while the vehicle is inside the magazine; i.e., the vehicle enters the magazine in either a loaded or unloaded condition, transfers the load to or from storage inside the magazine, and leaves the magazine either loaded or empty, depending on its mission.

Warehousing operations involve the movement of ammunition, but only within the magazine. The activity of a forklift truck during warehousing operations is substantially different from that during loading/unloading operations. Although the warehousing operation can be divided into the same three activity modes, all three modes are performed within the magazine and load transfer is performed twice for each load being handled.

Although any given forklift operation can vary from the two model scenarios presented above, it is believed that these models present a reasonably accurate picture of what most operations are likely to involve. Figure 1 is a pictorial representation of the two model scenarios.

### COMPONENTS OF DIESEL EXHAUST

Toxicological research programs are currently attempting to determine if diesel vehicle emissions have physical or chemical properties that would make them significantly more toxic than other combustion products associated with the use of fossil fuels. To date, however, no unique compounds have been identified in diesel emissions that present new concerns. Despite the lack of conclusive research, some measurement of airborne contamination must be attempted to ensure that the diesel-powered equipment the Army plans to purchase will not adversely



LOADING/UNLOADING

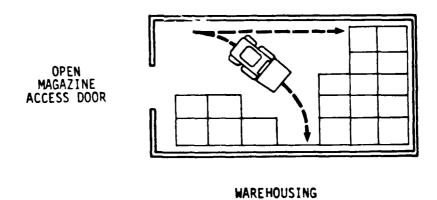



Figure 1. Two model scenarios for the operation and movement of forklift trucks in ammunition storage magazines.

affect the health of its personnel. A number of chemical substances can be considered prime candidates for testing. Candidate selection is based on a substance's capacity for producing a serious health hazard, having an irritant effect, or generating a noxious odor. Concern about a substance's toxic effects is obvious; the health and safety of Army personnel are important during both normal and combat service support operations. Irritant effects and noxious odors are important because their presence could hinder forklift operations during the execution of a military mission by adversely affecting morale. Final selection of exhaust components to be tested is also based on the availability of accurate and reliable methods of sampling and analysis.

Table 1 presents the diesel exhaust components tested during the forklift operation and their relevant health effects. These components include both airborne particulates and gaseous substances generated during the operation of diesel engines. Particulate Component

The particulate components of diesel emissions include both soluble and insoluble fractions. Particulates were monitored as total suspended particulate (TSP) and polycyclic aromatic hydrocarbons (PAH). Total suspended particulates were considered during this investigation because this category of particulate is regulated by OSHA as nuisance or irritant dusts. Polycyclic aromatic hydrocarbons (PAH) are of particular interest because

DIESEL EXHAUST COMPONENTS TESTED: THEIR RELEVANT HEALTH EFFECTS AND TARGET ORGANS<sup>A</sup> TABLE 1.

| Exhaust component tested                              | Relevant health effects                                                               | Target organs                                                   |
|-------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Particulates                                          |                                                                                       |                                                                 |
| Insoluble fraction                                    |                                                                                       |                                                                 |
| Total suspended particulates (TSP)                    | Eye and mucous membrane irritation                                                    | Respiratory system, eyes, throat                                |
| Soluble fraction                                      |                                                                                       |                                                                 |
| Polycyclic aromatic hydrocarbons (PAH)                | Systemic toxicity and carcinogenicity                                                 | Respiratory system, liver                                       |
| gases.                                                |                                                                                       |                                                                 |
| Carbon monoxide (CO)                                  | Vertigo, tachypnea, depression, angina,<br>syncope, asphyxia                          | Respiratory, cardiovascular, and central nervous systems; blood |
| Carbon dioxide (CO <sub>2</sub> )                     | Vertigo, restlessness, paresthesia, dyspnea, asphyxia, coma                           | Respiratory and cardiovascular systems, skin                    |
| Nitrogen dioxide, as oxides of nitrogen $(NO_{\chi})$ | Eye irritation, dyspnea, pulmonary edema,<br>tachypnea, tachycardía                   | Respiratory and cardiovascular systems                          |
| Sulfur dioxide (SO <sub>2</sub> )                     | Mucous membrane and pulmonary irritation, bronchoconstriction                         | Respiratory system, skin, eyes                                  |
| Sulfur acid, as sulfate $(50_4^{+2})$                 | Mucous membrane and pulmonary frritation, pulmonary edema, emphysema, dental errosion | Respiratory system, skin, teeth                                 |
| Other                                                 |                                                                                       |                                                                 |
| Total hydrocarbons (THC)                              | Vertigo, eye and mucous membrane irritation, numbness                                 | Respiratory system, skin, eyes                                  |
| Odorants                                              | Some irritation, psychosomatic effects                                                | Olfactory senses                                                |
|                                                       |                                                                                       |                                                                 |

8

Chemical Mazards, National Institute for Occupational Safety and Health and the Occupational Safety and Health Administration. DHEM (NIOSH) Publication No. 78-210, August 1981.

their presence can be an indication of the potential carcinogenicity of diesel exhaust. Although PAH are emitted from fossil fuel sources both as gaseous vapor and particulate, when released into the environment, the vapor portion will condense as, or on, fine particulates. Because of the importance of PAH, the soluble fraction of each particulate sample was analyzed for this group of substances.

## Gaseous Component

The gaseous emission components tested were carbon monoxide (CO), carbon dioxide (CO<sub>2</sub>), oxides of nitrogen (NO<sub>x</sub>), sulfur dioxide (SO<sub>2</sub>), and sulfuric acid aerosols as sulfates (SO<sub>4</sub><sup>+2</sup>).

Carbon monoxide was selected for sampling because it is potentially the most hazardous gaseous component. The cumulative effect of exposure to CO over a work period can cause central nervous system depression, blackouts, coma, and eventual death at the concentrations that could be reached in an enclosed work area. Due to the relatively hazardous nature of CO in the workplace, both the workers and general work area were monitored continuously for possible elevated levels.

Carbon dioxide, which is a simple asphyxiant, was monitored by both breathing zone (personal) and area samples. Due to the relatively high output of CO<sub>2</sub> from diesel engines, emphasis was placed on detecting the possible buildup of CO<sub>2</sub> in poorly ventilated areas of the magazine.

Oxides of nitrogen were monitored because of their relatively high volume of emissions from diesel engines and because

of their ability to produce odors and cause irritation, pulmonary edema, and trachycardia in humans.

Sulfur dioxide and sulfuric acid as sulfate  $(SO_4^{-12})$  cause severe irritation of the mucous membranes. Inhalation of sulfur dioxide may produce bronchoconstriction, uncontrolled coughing, and choking, particularly in individuals who already have asthmatic conditions. Sulfuric acid inhalation is also known to produce severe emphysema-type reactions.

## Other Components

Other exhaust components tested included total hydrocarbons (THC) and odorants. The THC were analyzed with a continuous air monitor specifically for nonmethane hydrocarbons. Odor measurements were collected for the eventual determination of total intensity of the aroma. <sup>3</sup>

### SAMPLING AND ANALYTICAL METHODS

A brief review of the sampling and analytical methods used during this investigation is presented here. A more detailed description of the methods used for breathing zone monitoring are presented in Appendix A.

## Breathing Zone (Personal) Monitoring

Breathing zone monitoring was conducted on Army personnel involved in the ammunition handling operation. The objective of this monitoring effort was to determine time-weighted average (TWA) exposures to diesel exhaust components and compare these exposures with OSHA permissible exposure limits (PEL's). The sampling and analytical methods used during the monitoring

effort are National Institute for Occupational Safety and Health (NIOSH)-approved techniques.  $^5$  The monitoring apparatus consisted of real-time electronic dosimeters for CO; constant hi-flow pumps for TSP, PAH, and  ${\rm SO_4}^{+2}$ ; and low-flow, constant-stroke pumps for  ${\rm NO_X}$ ,  ${\rm SO_2}$ , THC, and odorants. Carbon dioxide was monitored with passive dosimeters. The personal sampling methods and analytical procedures used for each exhaust component are summarized in Table 2.

The analysis of samples taken during the personal monitoring effort was conducted at PEDCo Environmental's analytical laboratory according to the prescribed reference analytical methods. This laboratory is accredited by the American Industrial Hygiene Association (AIHA) and participates in the NIOSH Proficiency Analytical Testing (PAT) program.

Because of the variety of collection methods required for the personal monitoring, directly equipping Army personnel with the necessary apparatus would have seriously interfered with normal working activities and may have affected the safe operation of the forklift vehicles. To avoid these problems, we mounted the sampling apparatus on the forklift trucks so that the point of collection for each apparatus was located in the breathing zone of the forklift operators (drivers). Sampling apparatus used to measure exposures for the other personnel (helpers) were located at stationary points, close to where these persons are likely to stand while observing and assisting the driver with load-transfer activities. It is worthwhile to note that the sampling apparatus used to measure a "helpers" exposures remained inside the magazine at all times during

TABLE 2. SAMPLING AND ANALYTICAL METHODS FOR DETERMINING WORKER EXPOSURES TO DIESEL EXHAUST COMPONENTS<sup>a</sup>

| Exhaust component tested                                   | Personal sampling method                | Analytical method                      | Reference number <sup>b</sup> |
|------------------------------------------------------------|-----------------------------------------|----------------------------------------|-------------------------------|
| Particulates                                               |                                         |                                        |                               |
| Insoluble fraction                                         |                                         |                                        |                               |
| Total suspended particulates (TSP) <sup>C</sup>            | Filter                                  | Gravimentric                           | 329 (505)                     |
| Soluble fraction                                           |                                         |                                        | <del></del>                   |
| Polycyclic aromatic hydrocarbons (PAH)                     | Filter (Soxhlet extraction)             | High-pressure liquid<br>chromatography | •                             |
| Cases                                                      |                                         |                                        |                               |
| Carbon monoxide (CO) <sup>d</sup>                          | Passive dosimeter                       | Direct reading (dosimetry)             | •                             |
| Carbon dioxide (CO <sub>2</sub> )                          | Continuous monitor                      | •                                      |                               |
| Mitrogen dioxide (as oxides of nitrogen, NO <sub>x</sub> ) | Solid sorbent (triethanolamine extract) | Spectrophotometry                      | PCAM231                       |
| Sulfur dtoxide (50 <sub>2</sub> ) <sup>c</sup>             | Filter                                  | Ion chromotography                     | PCAN268                       |
| Sulfur acid (as so <sub>4</sub> +2)                        | Filter                                  | Titration                              | \$174                         |
| Other                                                      |                                         |                                        |                               |
| Total hydrocarbons (THC)                                   | Continuous monitor                      | •                                      | ı                             |
| Odorants                                                   | Chromosorb 102                          | Liquid phase chromotography            | e e                           |

Schuetzle, D., and J. Perez. A CRC Cooperative Comparison of Extraction and HPLC Techniques for Diesel Particulate Emissions. APCA Paper 81-56.4. June 1981. NIOSH Manual of Analytical Methods
U.S. Department of Health and Human Services
Public Health Service
Center for Disease Control
National Institute for Occupational Safety and Health, August 1981.

<sup>b</sup> Method identification number for NIOSH unless otherwise specified.

<sup>C</sup> Known human irritant.

d Carbon monoxide was monitored with portable, continuous, real-time electronic monitoring equipment.

e DOAS method.

The state of the state of

the emission testing while the apparatus used to measure the "drivers" exposure was attached to the forklift trucks and moved in and out of the magazine with each loading/unloading effort.

Continuous Monitoring

A temperature-controlled mobile laboratory was positioned between the two ammunition magazines to be monitored and was used to house the data-acquisition computer and continuous-monitoring equipment. A continuous sampling system was used in conjunction with a programmable solenoid switching mechanism to collect air within the magazine. The air samples were collected for a period of 5 minutes three times an hour at four locations within the magazines (two sampling trains in each of two magazines). Air samples from each location were carried through heated Teflon sample lines to the programmable switching system located within the mobile lab. The continuous monitors drew air samples from a common manifold to analyze the air for concentrations of CO, CO<sub>2</sub>, SO<sub>2</sub>, NO<sub>x</sub>, and THC. Data were collected by a computerized data-acquisition system backed up by strip chart recorders.

The continuous monitoring system was comprised of three elements: a sequential sampling system, a bank of continuous monitors, and a computerized data-acquisition system. A schematic representation of the sequential sampling system is presented in Figure 2. Air samples from each of the four locations (two in each magazine) were carried through the heated 1-inch I.D. Teflon tubing at a rate of 10 liters/min. At the mobile

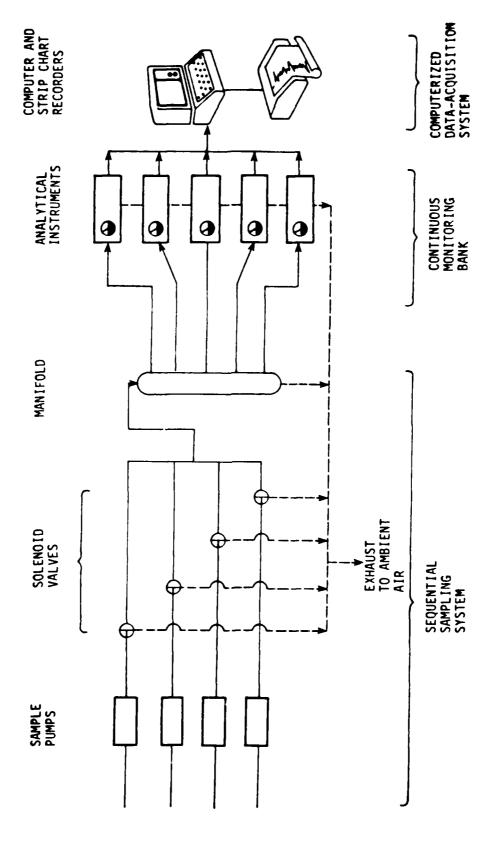



Figure 2. Sampling system for continuous monitors.

laboratory each sample line was connected to a two-way solenoid valve. The solenoid is open when in an unactivated condition and is then purging the sampling lines. Each valve setting is activated by the programmed data-acquisition system in a predetermined time sequence. Prior to activation, the valve to the manifold is closed and the valve to the exhaust is opened, thus allowing a constant flow of sample air through the sample lines. Upon activation, the valve to the exhaust is closed and the valve to the manifold is opened. Sample air is passed through the manifold at a rate of 10 liters/min. This system permits the air in the manifold to be changed at least once every 5 seconds. The analytical instruments then draw air from the manifold. After a 5-minute sampling period, the computer activates the valves on the next sampling line, while returning the first sample line to a purge condition. This process is repeated for the remaining sample locations, four in all, resulting in a sampling cycle time of 20 minutes. Thus, three 5-minute samples are obtained each hour for all gaseous pollutants at each of the locations.

In addition to the monitoring of magazine air, the data on the velocity through each magazine's ventilation duct were collected and stored by the computer system. Wind speed, wind direction, and temperature in and out of the magazines were recorded on strip charts.

A description of each continuous monitoring instrument and its limits of detection are presented in the following subsections.

### Sulfur Dioxide--

A Beckman Model 953 fluorescent analyzer was used for the continuous monitoring of SO<sub>2</sub>. The measurement principle of this instrument is based on the fluorescence of SO<sub>2</sub> molecules when irradiated with ultraviolet light. Operating ranges of 0 to 1.0, 0 to 20.0, and 0 to 6.0 ppm SO<sub>2</sub> were obtained with a minimum detection limit of 0.005, 0.010, and 0.030 ppm respectively. This instrument is certified by the U.S. Environmental Protection Agency (EPA) as a reference method for the measurement of sulfur dioxide.

#### Carbon Dioxide --

An Infrared Industries, Inc., Model 703-352 gas analyzer was used for the continuous monitoring of CO<sub>2</sub>. The measurement principle of this instrument is based on absorption of infrared radiation by CO<sub>2</sub>. Initially an operating range of 0 to 60,000 ppm or 0 to 6 percent CO<sub>2</sub> was used during the testing (November 29 through December 2). Because only very low CO<sub>2</sub> values were observed, however, the instrument was recalibrated on December 5 to a range of 0 to 42,000 ppm or 0 to 4.2 percent CO<sub>2</sub>. The instrument has a minimum detection limit of 50 ppm.

## Total Hydrocarbons--

A Meloy Model HC 500-2C analyzer was used for the continuous monitoring of THC. The measurement principle of this instrument is based on the ionization of hydrocarbon molecules in a hydrogen hyperventilated flame. An operating range of 0 to 1,000 ppm THC was used during the first two days of monitoring.

Now The State of the line

When only very low THC levels were observed, the instrument was recalibrated and run at a 0 to 50 ppm THC range (with a minimum detection limit of 0.1 ppm). The hydrocarbon analyzer was calibrated with propane gas concentrations and reported as parts per million total carbon (1 ppm propane is 3 ppm total carbon).

#### Carbon Monoxide --

A Bendix Model 8501-5CA analyzer was used for the continuous monitoring of CO. The measurement principle of this instrument is based on the absorption of infrared radiation by CO in a nondispersive photometer. An operating range of 0 to 50 ppm CO was achieved with a minimum detection limit of 0.5 ppm. This instrument is certified by the U.S. EPA as a reference method for the measurement of carbon monoxide.

# Oxides of Nitrogen--

A Bendix 8101-B chemiluminescent analyzer was used for the continuous monitoring of NO and  $NO_2$ . The measurement principle of this instrument is based on the chemiluminescent reaction between NO and ozone  $(O_3)$  according to the reaction:

$$NO + O_3 + NO_2 + O_2 + H_V$$

Light emissions result when the electronically excited  $NO_2$  molecules revert to their ground state. A catalytic converter is used to convert  $NO_2$  present in the air sample to NO before it enters the reaction chamber. The amount of  $NO_2$  is then determined by subtracting the NO measurement from the  $NO_X$  measurement. The analyzer provides automatic cycling through the NO

and NO<sub>x</sub> measurements, and the output difference (NO<sub>2</sub>) is updated after each cycle. The initial operating ranges used during the testing were 0 to 0.5, 1, and 2 ppm; with a minimum detection limit of 0.005 ppm. Because oxides of nitrogen concentrations above 2.0 ppm were observed, the instrument was adjusted to read concentrations up to 8.5 ppm during the second day of loading/unloading operations. During warehousing operations the instrument range was increased to 17.5 ppm full scale (December 13, 14, and 15). This instrument is certified by the EPA as a reference method for the measurement of oxides of nitrogen.

### DATA COLLECTION

Continuous and breathing zone data were collected for both loading/unloading and warehousing operations in two ammunition storage magazines. The tests were conducted over a 16-day period starting on November 29, 1983, and ending on December 15, 1983. The continuous and breathing zone data were taken to characterize 9 days of loading/unloading operations and 3 days of warehousing operations.

The typical loading/unloading operation was accomplished by unloading a full magazine containing 404 pallets of 90mm ammunition with one forklift, transferring the load to a second forklift, and then loading an adjacent empty magazine. The mean time for accomplishing a loading/unloading operation was 8 hours and 5 minutes; the best time was 7 hours and 20 minutes, and the worst-case time was 9 hours and 35 minutes. The worst-case time occurred on the first day of testing and probably reflects some

confusion and unfamiliarity on the part of the forklift operators while adjusting to the demands of the investigation. The best time reflects the action of an experienced team of forklift operators.

The typical warehousing operation was accomplished by transferring supplies with a single forklift vehicle within a single magazine. The duration of a warehousing operation will vary greatly, depending on the purpose of the operation and the extent of reorganization that is needed. The warehousing tests performed during this investigation averaged 3 hours and 55 minutes in duration; the minimum time was 3 hours and 20 minutes, and the maximum time was 4 hours and 15 minutes.

### III. RESULTS

Two diesel-powered forklift trucks were the primary focus of the testing effort: a Still forklift powered by a Deutz (F3L912W) engine and a Hyster forklift powered by a Perkins (4.2032) engine. However, two other forklift trucks were also tested: a Baker forklift powered by a Deutz (F3L912W) diesel engine and a Hyster forklift powered by a Perkins (4.154) diesel engine. Funding constraints prevented the reduction and analysis of data from the secondary vehicles. The raw data from both the primary and secondary vehicles are presented in Appendix B at the end of the report.

During the loading/unloading operations and the first four warehousing tests (Tests 1 through 4), the vehicles fired a Phillips D-2 Diesel Fuel (Control Lot C-929) containing 0.4 percent sulfur. During the last warehousing test (Test 5), a high-sulfur fuel (MIL-F-46162B) containing 1.02 percent sulfur was substituted in each of the vehicles.

During this testing effort, only one loading or unloading operation could be conducted each day. This limitation made it impossible to run simultaneous loading and unloading activities with the two makes of forklifts. This constraint prevented the investigators from obtaining indoor air quality data under identical conditions of weather and magazine ventilation. To reduce the influence of changes in weather and ventilation, we have

selected only those test days with similar weather conditions (i.e., ambient wind speed) for discussion in this report. As a result of this screening process, only five days of test data were available for in-depth analysis. Two of the test days present the impact on indoor air quality during the operation of the Still/Deutz vehicle, whereas the other three days present the impact during operation of the Hyster/Perkins vehicle. Although the five days of data represent information collected under similar conditions, the conditions were not identical. Based on an analysis of variance, the variances in the daily air velocity measurements taken at magazine ventilation ducts were found to be significantly different (P<0.05). The importance of this difference is obscured by the fact that air flow through the magazines ventilation duct may be secondary to the effect of air exchanges at the magazine entrance.

The data obtained during the unloading activities are considered to be only suggestive of the relative performance of the two diesel-powered forklift trucks. The test results do provide information on the absolute performance of each vehicle under the given test conditions.

To determine the relative performance of these vehicles, we monitored magazine air quality during warehousing operations. The nature of the warehousing operations permitted the testing of both vehicles on the same day, in adjacent magazines, under identical weather and ventilation conditions. These test conditions allowed a direct comparison to be made of vehicle emissions and permitted the statistical treatment of the continuous monitoring data.

## BREATHING ZONE SAMPLES

Breathing zone air samples representative of vehicle driver and helper exposures were taken during each of the loading/un-loading operations. Only air samples representative of the drivers' exposures were taken during warehousing operations. From the results of these air samples, time-weighted averages were determined for comparison with OSHA permissible exposure limits.

Table 3 summarizes the exposure of drivers and helpers to diesel exhaust during five unloading activities. Only three of the exhaust components monitored are reported: particulates, sulfates, and nitrogen dioxide. Polycyclic aromatic hydrocarbons (PAH), CO, and SO<sub>2</sub> were not captured in sufficient amounts for detection by the sampling and analytical methods used. Carbon dioxide was not detected because of the failure of the direct-reading passive dosimeter to respond at the sub-zero temperatures experienced during the tests.

Table 4 summarizes the exposure of drivers to diesel exhaust during warehousing operations while operating forklifts using low-sulfur (0.4 percent) fuel. Again, only data on particulates, sulfates, and nitrogen dioxide were reported. The other exhaust components measured during the breathing zone monitoring were at levels below the detection limits of the sampling and analytical methods used.

Table 5 presents the TWA's for a single driver exposed to diesel exhaust during an entire warehousing operation while operating forklifts using high-sulfur (1.02 percent) fuel. Only

TABLE 3. BREATHING ZONE EXPOSURES DURING UNLOADING OPERATIONS

|                  | <b>T</b> 4          |                | Time-weigh | ted average, <sup>a</sup> |
|------------------|---------------------|----------------|------------|---------------------------|
|                  | Test<br>date (1983) | Vehicle        | Driver     | Helper                    |
|                  |                     |                | (mg        | g/m <sup>3</sup> )        |
| Particulates     | 12/1                | Still/Deutz    | 0.05       | <0.01                     |
|                  | 12/5                | Still/Deutz    | 0.12       | <0.01                     |
|                  | 12/6                | Hyster/Perkins | <0.01      | 0.10                      |
|                  | 12/7                | Hyster/Perkins | <0.01      | 0.15                      |
|                  | 12/8                | Hyster/Perkins | <0.01      | <0.01                     |
|                  |                     |                | (µ         | g/m <sup>3</sup> )        |
| Total sulfates   | 12/1                | Still/Deutz    | 46         | <10                       |
|                  | 12/5                | Still/Deutz    | <10        | 22                        |
|                  | 12/6                | Hyster/Perkins | <10        | <10                       |
|                  | 12/7                | Hyster/Perkins | <10        | 18                        |
|                  | 12/8                | Hyster/Perkins | <10        | 18                        |
|                  |                     |                | (ppm)      |                           |
| Nitrogen dioxide | 12/1                | Still/Deutz    | <0.1       | 0.6                       |
|                  | 12/5                | Still/Deutz    | <0.1       | 0.1                       |
|                  | 12/6                | Hyster/Perkins | <0.1       | 0.2                       |
|                  | 12/7                | Hyster/Perkins | <0.1       | <0.1                      |
|                  | 12/8                | Hyster/Perkins | <0.1       | <0.1                      |

Time-weighted averages with "less than" signs indicate that the breathing zone samples collected were below the minima! detection of the method.

TABLE 4. BREATHING ZONE EXPOSURES DURING WAREHOUSING OPERATIONS USING LOW-SULFUR FUEL

|                  |      |                     | Time-                         | weighted average, a                  |
|------------------|------|---------------------|-------------------------------|--------------------------------------|
|                  | Test | Test<br>date (1983) | Vehicle                       | Driver                               |
|                  |      |                     |                               | $(mg/m^3)$                           |
| Particulates     | 1    | 12/13               | Still/Deutz<br>Hyster/Perkins | <0.01<br>0.82                        |
|                  | 2    | 12/13               | Still/Deutz<br>Hyster/Perkins | 0.71<br>0.69                         |
|                  | 3    | 12/14               | Still/Deutz<br>Hyster/Perkins | 0.66<br>1.52                         |
|                  | 4    | 12/14               | Still/Deutz<br>Hyster/Perkins | 0.98<br>1.03                         |
|                  |      |                     |                               | (µg/m <sup>3</sup> )                 |
| Total sulfates   | 1    | 12/13               | Still/Deutz<br>Hyster/Perkins | <10<br><10                           |
| 1                | 2    | 12/13               | Still/Deutz<br>Hyster/Perkins | <10<br>30                            |
|                  | 3    | 12/14               | Still/Deutz<br>Hyster/Perkins | <10<br>32                            |
|                  | 4    | 12/14               | Still/Deutz<br>Hyster/Perkins | <10<br><10                           |
|                  |      |                     |                               | (ppm)                                |
| Nitrogen dioxide | 1    | 12/13               | Still/Deutz<br>Hyster/Perkins | 0.9<br>0.2                           |
|                  | 2    | 12/13               | Still/Deutz<br>Hyster/Perkins | <0.1<br>0.6                          |
|                  | 3    | 12/14               | Still/Deutz<br>Hyster/Perkins | 0.9 <sub>b</sub><br>3.2 <sup>b</sup> |
|                  | 4    | 12/14               | Still/Deutz<br>Hyster/Perkins | 1.8<br>0.3                           |

Time-weighted averages with "less than" signs indicate that the breathing zone samples collected were below the minimal detection limit of the method.

Concentration is above the ACGIH threshold limit value (TLV) of 3 ppm for nitrogen dioxide.

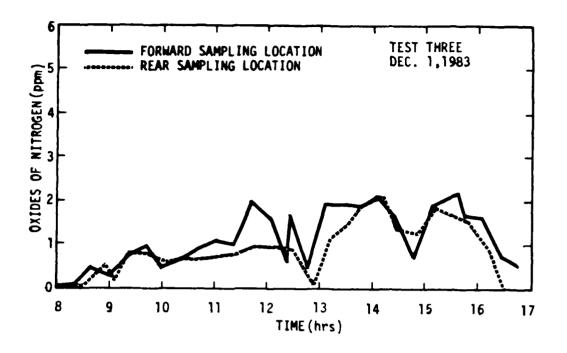
TABLE 5. BREATHING ZONE EXPOSURES DURING WAREHOUSING OPERATIONS USING HIGH-SULFUR FUEL

|                  | Test<br>date (1983) | Vehicle                       | Time-weighted average <sup>a</sup> Driver |
|------------------|---------------------|-------------------------------|-------------------------------------------|
|                  | duce (1300)         |                               | (mg/m <sup>3</sup> )                      |
| Particulates     | 12/15               | Still/Deutz<br>Hyster/Perkins | 0.95<br>1.33                              |
| ·                |                     |                               | (µg/m <sup>3</sup> )                      |
| Total sulfates   | 12/15               | Still/Deutz<br>Hyster/Perkins | <10<br>24                                 |
|                  |                     |                               | (ppm)                                     |
| Nitrogen dioxide | 12/15               | Still/Deutz<br>Hyster/Perkins | 0.49<br>0.37                              |

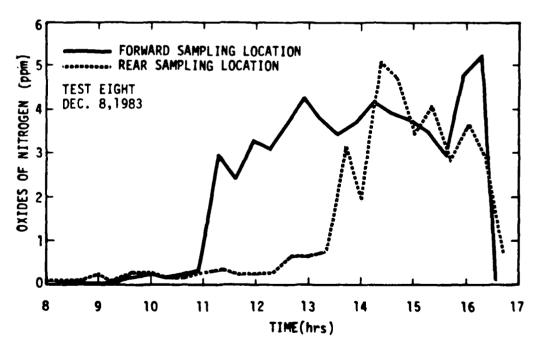
Time-weighted averages with "less than" signs indicate that the breathing zone samples collected were below the minimal detection limit of the method.

levels of particulate, sulfates, and nitrogen dioxide were found above the detection limits of the methods used. These values may represent a worst-case scenario since it is likely that during real warehousing operations more than one driver would be involved in the operation of a single forklift truck during any given operation. During the test the Army utilized two drivers for each vehicle, resulting in each driver being exposed to diesel emission for a duration equal to approximately half the test period.

#### CONTINUOUS AIR MONITORING

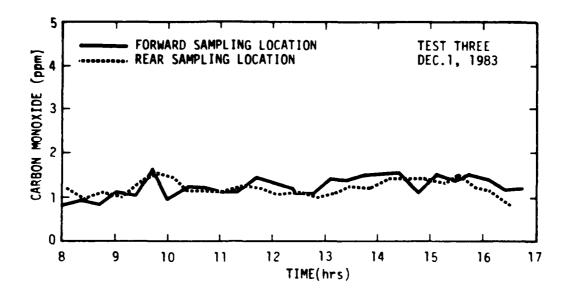

Continuous air monitoring was conducted during both the loading/unloading and warehousing operations. The results were compiled for both operations for each of the two vehicles tested. The data are presented in both graphic and tabular format. graphic presentation consists of time-concentration profiles for each of the measured exhaust components during selected tests. The tabular format presents a summary of the mean and peak concentrations measured during the five unloading and five warehousing tests. Unloading operations are of greater interest than loading operations for two reasons 1) test data indicate that the unloading phase is likely to produce greater peak concentrations and 2) continuous unloading operations are more reflective of a real event likely to be required of vehicles and personnel during wartime. Warehousing operations are of interest because they appear to represent a worst-case scenario for using dieselpowered forklift trucks. The tables also present the results of

a statistical test for significant differences between the groups of air quality data measured during the operation of the two forklift vehicles.


Figures 3 through 7 present example time-concentration profiles of unloading activities for the Still/Deutz and Hyster/Perkins vehicles. These figures summarize indoor air quality measured on the December 1 and December 8, test dates. In each figure, the duration of the loading activity (in military time) is presented along the abscissa of the profile, and the change in concentration (in ppm) of the exhaust component is presented along the ordinate.

The paired profiles presented in each figure summarize indoor air quality measured at each of the two locations within the magazine. One location (designated "forward") is situated approximately one-third the way into the magazine. The second location (designated "rear") is situated approximately two-thirds the way into the magazine. Both openings to the sample lines are located at approximately the centerline of the magazine, 2 feet below the magazine ceiling. Each time-concentration profile begins at the time of the test startup, just as the vehicles enter the ammunition magazines; the profiles end when unloading activity is completed.

Figures 8 through 12 present time-concentration profiles for a representative warehousing test. The profiles of both vehicles are presented for each exhaust component monitored during Ware-housing Test 2, which was conducted on December 13. Only one



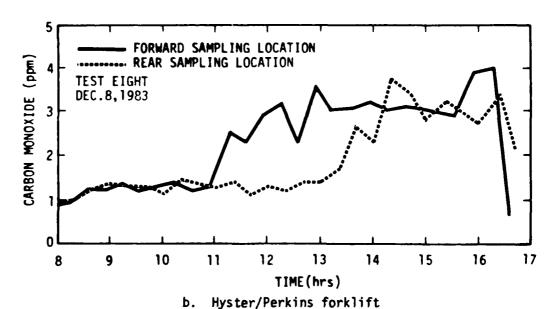
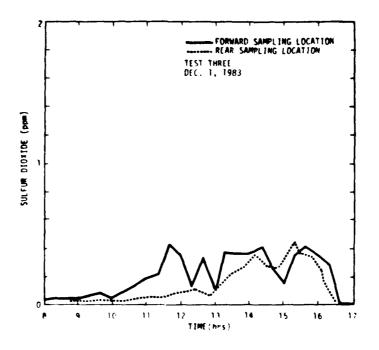
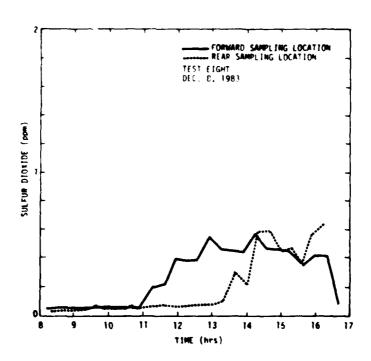

a. Still/Deutz forklift

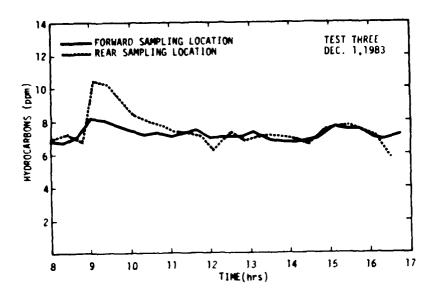


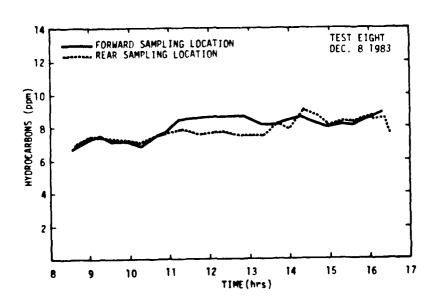
b. Hyster/Perkins forklift

Figure 3. Time-concentration profiles of oxides of nitrogen during magazine unloading activities.



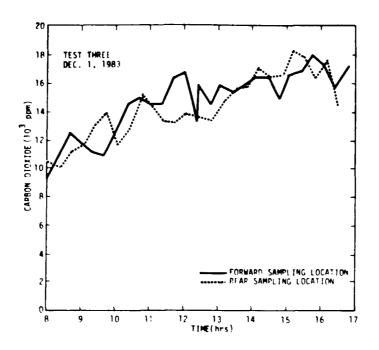




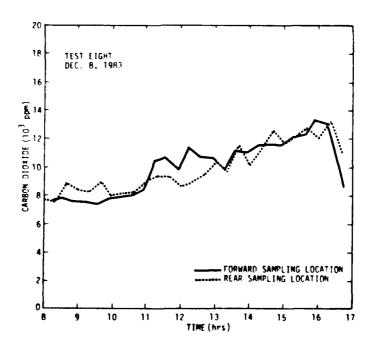


Figure 4. Time-concentration profiles of carbon monoxide during magazine unloading activities.





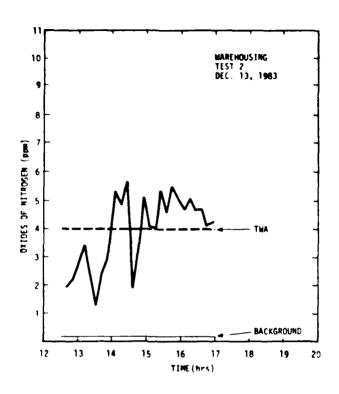

b. Hyster/Perkins forklift


Figure 5. Time-concentration profiles of sulfur dioxide during magazine unloading activities.

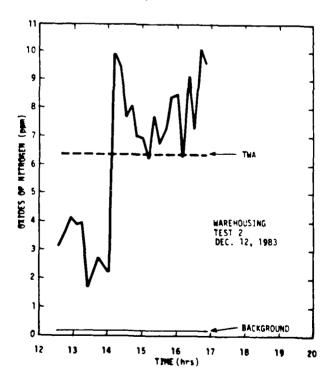





b. Hyster/Perkins forklift

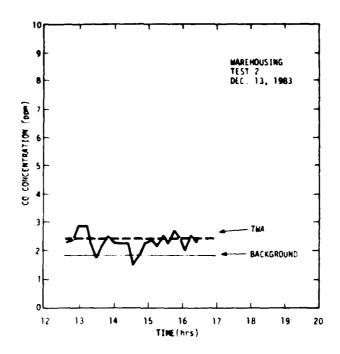

Figure 6. Time concentration profiles of hydrocarbons during magazine unloading activities.

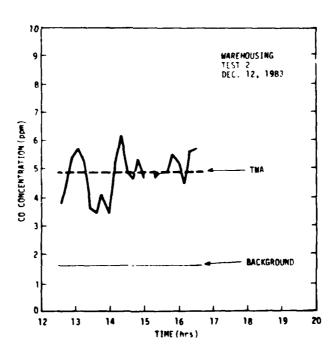





# b. Hyster/Perkins forklift

Figure 7. Time concentration profiles of carbon dioxide during magazine unloading activities.

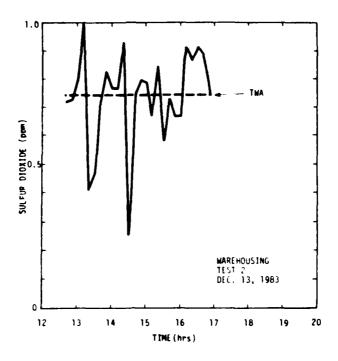


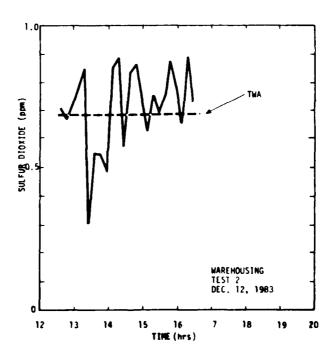






b. Hyster/Perkins forklift

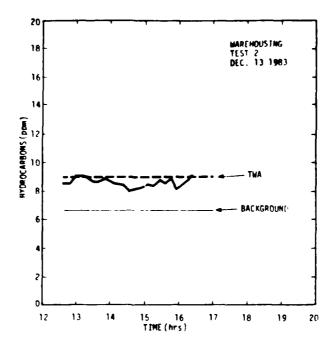
Figure 8. Time-concentration profiles of oxides of nitrogen during magazine warehousing activities.



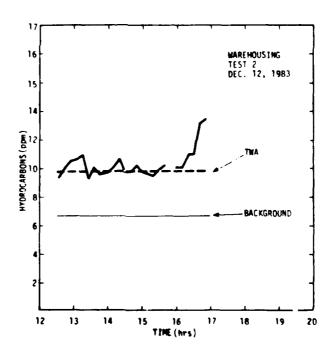




b. Hyster/Perkins forklift

Figure 9. Time-concentration profiles of carbon monoxide during magazine warehousing activities.


The state of the s

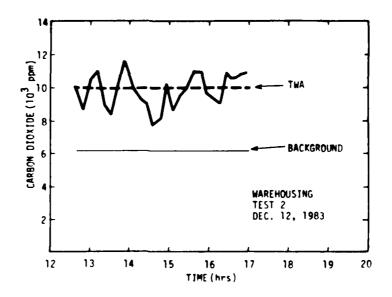


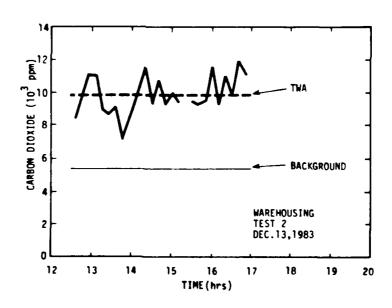



o. Hyster/Perkins forklift

Figure 10. Time-concentration profiles of sulfur dioxide during magazine warehousing activities.




a. Still/Deutz forklift




b. Hyster/Perkins forklift

Figure 11. Time-concentration profiles of hydrocarbons during magazine warehousing activities.

- Market Market





b. Hyster/Deutz forklift

Figure 12. Time-concentration profiles of carbon dioxide during magazine warehousing activities.

A CONTRACTOR OF THE PARTY OF TH

profile (data from the "forward" location) is presented in each figure because the monitoring was limited to one sampling location during the warehousing tests. Because the warehousing activities had the greatest impact on air quality, the mean concentration (estimated TWA) is presented for each profile. The background concentration measured for each pollutant on the day before testing is also indicated on the time-concentration profile.

Tables 6 through 8 present summaries of the continuous monitoring data collected during the five tests of unloading activities and the five tests of warehousing operations. Results are presented for each exhaust component by test date and vehicle. The number of samples taken, the mean concentration during the test (estimated TWA), and the peak concentration observed during the test are reported. Also reported is the time to peak as calculated from the beginning of the test, i.e., 7:05 indicates that the peak occurred 7 hours and 5 minutes after the beginning of the test. Table 6 presents a summary of indoor air quality measured during the unloading activities. Table 7 presents a summary of the indoor air quality during warehousing operations conducted with forklifts using the lower-sulfur fuel. Table 8 presents the same activity with forklifts using high-sulfur fuel. Although two warehousing operations were performed during the test of high-sulfur fuels, only data from the second test are presented. The results of the first test are considered invalid because the vehicles were not supplied with fuel having an

TABLE 6. SUMMARY OF INDOOR AIR QUALITY DURING UNLOADING ACTIVITIES

|                    | Test<br>date (1983) | Vehicle        | Concentra-<br>tion (ppm) |                |       | Time                |
|--------------------|---------------------|----------------|--------------------------|----------------|-------|---------------------|
|                    |                     |                | n                        | Mean           | Peak  | to peak (hour:min.) |
| Oxides of nitrogen | 12/1                | Still          | 49                       | 1.132          | 2.155 | 7:05                |
|                    | 12/5                | Still          | 43                       | 1.726          | 2.910 | 4:00                |
|                    | 12/6                | Hyster         | 46                       | 2.506          | 6.070 | 5:40                |
|                    | 12/7                | Hyster         | 49                       | 2.646          | 8.861 | 5:00                |
|                    | 12/8                | Hyster         | 49                       | 2.018          | 5.379 | 7:40                |
| Carbon monoxide    | 12/1<br>12/5        | Still<br>Still | 49<br>43                 | 1.2            | 1.6   | 0:80<br>3:00        |
|                    | 12/6                | Hyster         | 46                       | 1.9            | 3.3   | 3:20                |
|                    | 12/7                | Hyster         | 49                       | 3.3            | 21.4  | 4:40                |
|                    | 12/8                | Hyster         | 49                       | 2.2            | 4.0   | 7:40                |
| Sulfur dioxide     | 12/1<br>12/5        | Still<br>Still | 49<br>43                 | 0.195<br>0.264 | 0.447 | 6:25<br>5:15        |
|                    | 12/6                | Hyster         | 46                       | 0.191          | 0.507 | 3:20                |
|                    | 12/7                | Hyster         | 49                       | 0.349          | 1.974 | 5:00                |
|                    | 12/8                | Hyster         | 49                       | 0.247          | 0.640 | 7:40                |
| Hydrocarbons       | 12/1                | Still          | 49                       | 7.4            | 10.4  | 0:20                |
|                    | 12/5                | Still          | 43                       | 7.8            | 14.5  | 0:80                |
|                    | 12/6                | Hyster         | 46                       | 7.5            | 8.5   | 7:00                |
|                    | 12/7                | Hyster         | 42                       | 8.5            | 15.4  | 4:40                |
|                    | 12/8                | Hyster         | 49                       | 7.9            | 9.0   | 5:40                |
| Carbon dioxide     | 12/1                | Still          | 49                       | 1474           | 1822  | 6:25                |
|                    | 12/5                | Still          | 37                       | 733            | 866   | 3:40                |
|                    | 12/6                | Hyster         | 46                       | 905            | 1097  | 3:40                |
|                    | 12/7                | Hyster         | 49                       | 801            | 1349  | 5:00                |
|                    | 12/8                | Hyster         | 49                       | 1010           | 1332  | 7:20                |

TABLE 7. SUMMARY OF INDOOR AIR QUALITY DURING WAREHOUSING OPERATIONS WITH FORKLIFTS USING LOW-SULFUR FUEL

|                    |                     |      |                 |          | Concer         |                 | Time                      |
|--------------------|---------------------|------|-----------------|----------|----------------|-----------------|---------------------------|
|                    | Test<br>date (1983) | Test | Vehicle         | n        | Mean           | Peak            | to peak<br>(hour:min.)    |
| Oxides of nitrogen | 12/13               | 1    | Still<br>Hyster | 13<br>15 | 3.583<br>5.096 | 5.086<br>8.567  | 0:30 <sup>a</sup><br>1:00 |
|                    | į                   | 2    | Still<br>Hyster | 26<br>26 | 3.925<br>6.327 | 5.661<br>10.066 | 1:45 <sup>a</sup><br>4:15 |
|                    | 12/14               | 3    | Still<br>Hyster | 26<br>26 | 4.792<br>8.025 | 6.759<br>11.122 | 4:00 <sup>a</sup><br>1:30 |
|                    |                     | 4    | Still<br>Hyster | 24<br>24 | 5.624<br>7.167 | 7.843<br>11.015 | 1:30 <sup>a</sup><br>0:40 |
| Carbon<br>monoxide | 12/13               | 1    | Still<br>Hyster | 14<br>15 | 2.0<br>3.8     | 2.7             | 0:50 <sup>a</sup><br>0:60 |
|                    |                     | 2    | Still<br>Hyster | 25<br>24 | 2.4<br>4.8     | 4.5<br>6.2      | 3:45 <sup>a</sup><br>1:55 |
|                    | 12/14               | 3    | Still<br>Hyster | 26<br>26 | 2.6<br>5.4     | 3.1<br>7.1      | 0:50 <sup>a</sup><br>3:15 |
|                    |                     | 4    | Still<br>Hyster | 24<br>24 | 3.6<br>5.2     | 4.4<br>6.8      | 1:30 <sup>a</sup><br>0:40 |
| Sulfur<br>dioxide  | 12/13               | 1    | Still<br>Hyster | 14<br>15 | 0.498<br>0.539 | 0.668<br>0.788  | 0:40<br>2:00              |
|                    |                     | 5    | Still<br>Hyster | 25<br>25 | 0.712<br>0.692 | 0.998<br>0.886  | 0:30<br>3:35              |
|                    | 12/14               | 3    | Still<br>Hyster | 25<br>26 | 0.691<br>0.753 | 0.918<br>1.008  | 4:00<br>3:10              |
|                    |                     | 4    | Still<br>Hyster | 24<br>24 | 0.936<br>0.694 | 1.425<br>1.016  | 1:30<br>0:10 <sup>a</sup> |
| Hydrocarbons       | 12/13               | 1    | Still<br>Hyster | 14<br>15 | 8.6<br>9.6     | 9.5<br>10.6     | 0:50 <sup>a</sup><br>0:60 |
|                    |                     | 2    | Still<br>Hyster | 25<br>24 | 8.6<br>9.9     | 9.9<br>11.0     | 3:55 <sup>a</sup><br>4:05 |
|                    | 12/14               | 3    | Still<br>Hyster | 26<br>27 | 8.5<br>10.2    | 9.2<br>11.2     | 2:10 <sup>a</sup><br>2:00 |
| :                  |                     | 4    | Still<br>Hyster | 24<br>24 | 8.9<br>10.2    | 9.8<br>10.8     | 2:00 <sup>a</sup><br>1:40 |
| Carbon<br>dioxide  | 12/13               | 1    | Still<br>Hyster | 14<br>15 | 870<br>830     | 1067<br>977     | 0:10<br>1:00              |
|                    |                     | 2    | Still<br>Hyster | 26<br>25 | 989<br>991     | 1111<br>1189    | 4:15<br>4:05              |
|                    | 12/14               | 3    | Still<br>Hyster | 26<br>26 | 1288<br>1300   | 1539<br>1507    | 0:50<br>1:30              |
|                    |                     | 4    | Still<br>Hyster | 24<br>24 | 1526<br>1352   | 1761<br>1523    | 3:30<br>0:10 <sup>a</sup> |

 $<sup>^{\</sup>rm A}$  Air quality impact of this vehicle was found to be significantly lower than the other test vehicle (p <0.05).

TABLE 8. SUMMARY OF INDOOR AIR QUALITY DURING WAREHOUSING OPERATIONS WITH FORKLIFTS USING HIGH-SULFUR FUEL

|                    | Test<br>date (1983) | Vehicle         | Concentra-<br>tion (ppm) |                |                 | Time                      |
|--------------------|---------------------|-----------------|--------------------------|----------------|-----------------|---------------------------|
|                    |                     |                 | n                        | Mean           | Peak            | to peak (hour:min.)       |
| Oxides of mitrogen | 12/15               | Still<br>Hyster | 18<br>18                 | 2.618<br>8.586 | 3.497<br>12.984 | 0:10 <sup>a</sup><br>2:50 |
| Carbon monoxide    | 12/15               | Still<br>Hyster | 18<br>18                 | 1.3            | 2.2<br>5.8      | 0:10 <sup>a</sup><br>1:40 |
| Sulfur dioxide     | 12/15               | Still<br>Hyster | 18<br>18                 | 1.246<br>1.829 | 1.643<br>2.863  | 1:10 <sup>a</sup><br>2:50 |
| Hydrocarbons       | 12/15               | Still<br>Hyster | 18<br>18                 | 8.7<br>10.7    | 9.3<br>11.9     | 1:50 <sup>a</sup><br>1:40 |
| Carbon dioxide     | 12/15               | Still<br>Hyster | 18<br>18                 | 1017<br>1222   | 1215<br>1501    | 0:10<br>1:40              |

 $<sup>^{\</sup>rm a}$  Air quality impact of this vehicle was found to be significantly lower than the other test vehicle (p <0.05).

idential sulfur content. Successful fueling of the vehicles prior to the second test was accomplished, and the data from this test are believed to reflect more equitable assessment of the diesel emission levels from the two test vehicles.

Tables 7 and 8 also present the results of a statistical analysis to test the significance of the difference between exhaust concentrations generated from the two test forklifts. The specific statistical tests used during this analysis are outlined in Appendix C.

### LIMITATIONS OF THE DATA

A factor that may have confounded the indoor air quality data is the severe weather conditions experienced during the test period. Windspeeds outside the storage magazines were recorded at velocities ranging between 0 and 20 mph with gusts up to 30 mph. Ambient temperatures ranged between 12° and 40°F.

The weather conditions presented two problems in the interpretation and use of the test data. Windspeed directly affects the ventilation rate of the storage magazine by altering the volumetric flow of air through the magazine's passive system. The magnitude of the windspeed is believed to have influenced all test data to some degree because daily changes in the speeds frequently ranged between 5 and 15 mph. Increases in windspeed would significantly increase the ventilation of the magazines and retard the accumulation of diesel exhaust. The effect of elevated windspeed on the magazine ventilation certainly affected the

estimation of both mean indoor air quality and the TWA's and probably resulted in an underestimation of both the continuous monitoring and worker exposures.

The changes in windspeed were most detrimental to the utility of test data on the loading/unloading operations because the two forklift vehicles could not be tested while performing the same tasks on the same days. Because the nature of the warehousing operations allowed tests of both forklifts on the same day, the change in windspeed does not present a serious problem in the interpretation of the indoor air quality data taken during these operations.

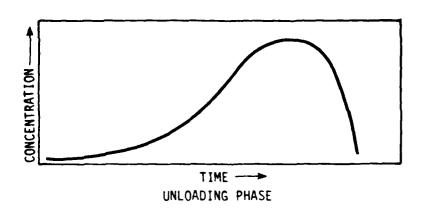
The second problem associated with the weather related to the low temperatures experienced inside and outside of the magazines. Although it is not known what exact effect such extreme temperatures might have had on the vehicles, it is reasonable to assume that these conditions could have affected the performance of the test vehicles and therefore affected the indoor air quality of the magazines.

#### IV. CONCLUSIONS

The test results led to the following conclusions regarding the impact of diesel exhaust on magazine air quality:

- The impact of diesel exhaust on breathing zone exposures and magazine air quality depends largely on the type of operation being performed. Of the two operating scenarios investigated (i.e., loading/unloading and warehousing), warehousing presents the greater potential risk to the health and safety of Army personnel.
- 2) Breathing zone exposures and magazine air quality data were compared with the OSHA permissible exposure levels and ACGIH threshold limit values. Under the operating conditions, ventilation, and temperature during the test, nitrogen dioxide is the only exhaust component of those measured that presents a potentially serious health risk to Army personnel.
- 3) The Still forklift powered by a Deutz (F3L912W) engine is clearly the cleaner of the two vehicles tested. Under the operating conditions, ventilation, and temperature during the tests, the Still/Deutz vehicle did not exceed any of the OSHA permissible exposure limits for the exhaust components measured.

CHARACTERIZATION OF DIESEL FORKLIFT IMPACT ON MAGAZINE AIR QUALITY


During the testing effort, the loading/unloading operation was broken down into separate activities. Indoor air quality was monitored during both loading and unloading activities with the Still/Deutz vehicle. The results indicated that although the time-concentration profiles of the two types of activity are separate and distinct, the average exhaust emission concentrations during these activities is not noticeably different. The data did indicate that the unloading phase of the operation was likely

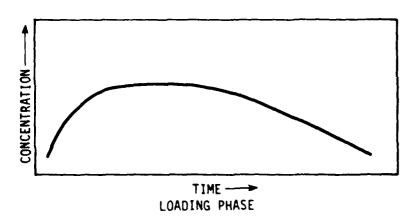

to produce greater peak accumulations of exhaust emissions. The unloading phase presents the greatest concern because an all-out unloading effort is what is likely to occur when supporting a combat operation. A concentrated loading effort similar to the operation experienced during the tests is unlikely to occur.

Figure 13 presents hypothetical time-concentration profiles for each phase of the loading/unloading and warehousing operations. Although the profiles are highly idealized portrayals of the actual test data, they clearly illustrate the time-concentration characteristics of forklift operations. In the interest of focusing resources on those aspects of the testing most likely to yield useful results, an indepth analysis was performed only on data from the unloading phase.

A plot of the test data taken during the unloading phase of a loading/unloading operation is usually skewed to the right of the time-concentration profile because the forklift spends little time in the magazine during the movement of the first few ammunition pallets. As the unloading phase progresses, the forklift spends proportionately more of its operational time inside the magazine until, near the end of the phase, the truck has to travel the entire length of the magazine to get to the remaining pallets.

Conversely, the plot of test data taken during the loading phase is usually skewed to the left of the time-concentration profile because the forklift begins the loading phase by traversing the entire magazine with the first few pallets. As the





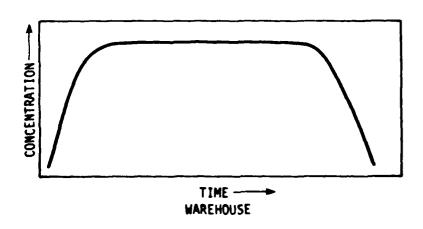



Figure 13. Hypothetical time-concentration profiles of loading, unloading, and warehousing operations.

loading phase progresses, the forklift spends less and less of its operating time inside the magazine.

Another important characteristic of these profiles is the similarity of the areas under the loading and unloading time-concentration curves; i.e., the mean air quality of each phase is approximately the same. The peak concentrations, although some-what similar in magnitude, appear at different times. Peak concentrations during the unloading phase occur late in the operation, whereas peak concentrations in the loading phase are reached early in the operation.

Warehousing operations, which require the test vehicles to remain inside the magazine during the entire operation, have their own unique time-concentration profiles. Because the vehicles remain inside the magazine during the entire operation, the concentrations of exhaust emissions rise quickly and are sustained at higher levels than during the loading/unloading operations. Both the mean and peak concentrations that occur during warehousing operations are higher than those during loading/unloading operations of similar duration.

COMPARISON OF PERSONNEL EXPOSURES AND MAGAZINE AIR QUALITY WITH OSHA PERMISSIBLE EXPOSURE LIMITS

Two sources of information are available for use in judging the health risks associated with exposure to the diesel forklift exhausts: OSHA's permissible exposure limits (PEL's) and the ACGIH's threshold limit values (TLV's). Emphasis is placed on a comparison of the test results with the OSHA PEL's because these limits represent Federal health standards for the workplace. The

ACGIH TLV's are also of interest; although these limits are not binding regulations, they do represent what can be considered "good-practice" guidelines. The TLV's are exposure limits based upon the public health community's current knowledge of the effect of toxic substances on the workforce. The OSHA PEL's are different from the ACGIH TLV's in that, with a few exceptions, they represent the TLV's as interpreted in 1968. These 1968 TLV's were adopted by OSHA during the establishment of the Occupational Safety and Health Act of 1970. Table 9 summarizes the applicable exposure limits.

Based on the results of breathing zone monitoring conducted during the unloading activities and warehousing operations, the following conclusions can be drawn as to the health risks posed by each of the exhaust components monitored.

## Particulates

The particulate exposures experienced by forklift drivers and helpers do not present a problem when interpreted as a nuisance dust. Under the worst conditions, the particulate exposures calculated as TWA's in Tables 3, 4, and 5 only begin to approach 10 percent of the OSHA standard and 15 percent of the TLV.

Exposures to the PAH's were below the detection limits of the sampling and analytical methods. Because the lack of data on exposure to PAH's is the result of a detection problem, we were unable to assess the health risk posed by these substances.

TABLE 9. EXPOSURE LIMITS FOR DIESEL EXHAUST COMPONENTS

|                                                                                          |                                                             | ACGIH <sup>b</sup>                                          |                                         |  |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|--|
| Exhaust component                                                                        | OSHA PEL <sup>a</sup><br>8-h                                | TWA<br>8-h                                                  | STEL<br>15-min                          |  |
| Particulate components                                                                   |                                                             |                                                             |                                         |  |
| Insoluble fraction Total nuisance dust                                                   | 15 mg/m³                                                    | 10 mg/m³                                                    | _                                       |  |
| Soluble fraction Polycyclic aromatic hydro- carbon (coal tar pitch volatiles)            | 0.2 mg/m³                                                   | 0.2 mg/m³                                                   | -                                       |  |
| Gaseous components                                                                       | •                                                           |                                                             |                                         |  |
| Carbon monoxide<br>Carbon dioxide<br>Nitrogen dioxide<br>Sulfur dioxide<br>Sulfuric acid | 50 ppm<br>5000 ppm<br>5 ppm<br>5 ppm<br>1 mg/m <sup>3</sup> | 50 ppm<br>5000 ppm<br>3 ppm<br>2 ppm<br>1 mg/m <sup>3</sup> | 400 ppm<br>15,000 ppm<br>5 ppm<br>5 ppm |  |
| Other components                                                                         |                                                             |                                                             |                                         |  |
| Total hydrocarbons<br>Odorants                                                           | -                                                           |                                                             | -                                       |  |

General Industry Safety and Health Standards - Toxic and Hazardous Substances. Code of Federal Regulations, Title 29, Chapter XVII, Part 1910, Subpart 2. 47 FR 51117. November 1982.

A STATE OF THE PARTY OF THE PAR

b TLV's - Threshold Limit Values for Chemical Substances and Physical Agents in the Work Environment with Intended Changes for 1983-84. ACGIH. Cincinnati, Ohio.

### Total Sulfates

The concentration of total sulfates was measured to obtain an estimate of the possible exposure of Army personnel to sulfuric acid. As in the case of TSP, exposure to sulfuric acid aerosols during the operation of diesel-powered forklifts should not present a health problem. Even if all the sulfates collected were assumed to represent airborne aerosols of sulfuric acid, the TWA exposures to this substance would be less than 5 percent of the OSHA standard and the TLV.

### Nitrogen Dioxide

Nitrogen dioxide appears to represent the only serious health risk to Army personnel involved in the types of ammunition handling operations tested. Detectable exposures to nitrogen dioxide ranged between 2 and 64 percent of the OSHA standard during unloading and warehousing activities. The largest TWA exposure occurred during a warehousing operation. Although this exposure level was only 64 percent of the OSHA standard, it exceeded the ACGIH threshold limit value for nitrogen dioxide.

Continuous monitoring for oxides of nitrogen indicates that the mean indoor air quality during unloading activities could reach levels equal to 53 percent of the OSHA standard for NO<sub>2</sub>, with peak concentrations exceeding the ACGIH's short-term exposure limit (STEL). The oxides of nitrogen problem is more severe during warehousing operations; the mean concentration of these oxides was well in excess of the OSHA standard when interpreted as nitrogen dioxide (see Table 7). Although these test results indicate the potential for a serious health risk, the results of

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

the continuous monitoring for oxides of nitrogen cannot be compared directly with the OSHA PEL's or ACGIH TLV's for nitrogen dioxide because the continuous monitor reports data as total oxides of nitrogen (which include both NO and NO<sub>2</sub>). Although the NO<sub>2</sub> contribution to the total oxides of nitrogen (NO<sub>X</sub>) readings averaged about 10 to 20 percent, a review of the testing data (Appendix B) indicates that the contribution of NO<sub>2</sub> ranged from values as low as 1 percent to values as high as 50 percent of the NO<sub>X</sub> reading.

## Carbon Monoxide

Carbon monoxide does not appear to present a serious health risk during these operations. Although initially of great concern, breathing zone measurements of carbon monoxide never exceeded any of the established standards or workplace limits. The breathing zone measurements taken were below the detection limit of the instrument. Continuous monitoring for CO during warehousing operations detected a few peak concentrations reaching values as high as 5 percent of the STEL.

## Sulfur Dioxide

Sulfur dioxide levels were monitored by both breathing zone and continuous measurements. No breathing zone exposures were recorded because no levels were found above the detection limits of the sampling and analytical method.

The continuous monitoring data indicated that although the mean exposures to SO<sub>2</sub> were well below the OSHA standard and TLV, peak concentrations approach 30 percent of the STEL during warehousing operations when the forklifts burned low-sulfur fuel (see Table 7). Peaks approaching 60 percent of the STEL were detected

during similar operations when high-sulfur fuel was burned (see Table 8).

### Carbon Dioxide

Carbon dioxide concentrations do not present a health risk to Army personnel during either unloading activities or warehousing operations. No carbon dioxide was found in amounts above the detection limit of the passive dosimeters used to determine breathing zone exposures.

The continuous monitoring instruments did detect  ${\rm CO}_2$ , but the levels were less than 30 percent of the OSHA standard and TLV.

## Odorants

Samples of diesel exhaust were collected on Chromosorb 102 adsorbent for analysis using the Diesel Odor Analysis System (DOAS). However, due to delays in obtaining analytical standard reference solutions from the supplier, the analyses of the Chromosorb could not be performed within the time frame of the project. The chromosorb adsorbent has been archived in the PEDCo Environmental laboratory for future analysis.

It is unlikely that a future analysis of the Chromosorb will produce significant results since onsite subjective assessment of the odors levels by the testing team indicated that odors from unloading/loading and warehousing operations were slight or nondetectable.

### COMPARISON OF FORKLIFT EMISSION LEVELS

Comparison of emission levels from the two diesel-powered forklifts indicates that the Still forklift equipped with a Deutz (F3L912W) engine is the cleaner vehicle. Data collected during the warehousing activities and subjected to a statistical analysis (Appendix C) demonstrated that the impact on magazine air quality was significantly less when used with the Still/Deutz vehicle (see Tables 7 and 8).

The objective of the statistical analysis was to judge the relative "cleanliness" of the test forklifts by determining whether the difference in exhaust concentrations was significantly lower for one than for the other. Two sets of warehousing tests were analyzed; a set of four test runs in which both vehicles burned low-sulfur fuel and a single test run in which both vehicles burned high-sulfur fuel. The warehousing tests with low-sulfur fuel indicated the following:

- 1) The Still/Deutz vehicle was significantly cleaner than the Hyster/Perkins vehicle for oxides of nitrogen and carbon monoxide.
- 2) The Still/Deutz tested cleaner than the Hyster/Perkins in three of the four warehousing tests for total hydrocarbons. The remaining test for total hydrocarbons was inconclusive and showed no difference between the two vehicles.
- 3) The data on sulfur dioxide and carbon dioxide showed no significant difference between the two vehicles in three of the four tests. The last warehousing test indicated a significantly smaller contribution from the Hyster/Perkins vehicle.

The street will be the

The test results on warehousing operations with high-sulfur fuel were more conclusive:

- 1) The Still/Deutz operated significantly cleaner than the Hyster/Perkins vehicle with regard to emissions of oxides of nitrogen, carbon monoxide, sulfur dioxide, and hydrocarbons.
- Only the test data on carbon monoxide indicated no significant difference between vehicle emissions.

A - Market Balling

### V. RECOMMENDATIONS

The current test results provide a data base from which to characterize the operation of diesel-powered forklifts during ammunition handling and storage activities in Stradley-type magazines. Also, the results have successfully characterized the relative performance of the two test vehicles and clearly identified the Still/Deutz (F32912W) diesel-powered forklift as the "cleaner-burning" vehicle. The absolute safety of the Still/Deutz vehicle, however, could not be firmly established from the test data.

Although no OSHA exposure limits were exceeded during the testing of the Still/Deutz vehicle, two facts associated with the test results prevent any final assessment: 1) levels of nitrogen dioxide and oxides of nitrogen, although not at concentrations in excess of the OSHA standard, were high enough to warrant concern; and 2) weather conditions were extreme enough to question the validity of using the test results to characterize more "normal" operating conditions. Specifically, test conditions during this investigation may have produced low estimates of indoor air quality. High windspeeds and low temperatures during the testing may have affected both magazine ventilation and engine performance in such a manner as to result in under estimation of the potential health risk involved.

To eliminate these areas of uncertainty associated with the operation of the Still/Deutz vehicle, PEDCo Environmental recommends that the Army consider an additional series of tests.

These additional tests should be conducted with the objective of assessing the Still/Deutz forklift under the opposite weather conditions, i.e., low windspeed and high temperatures. At a minimum, breathing zone and continuous air monitoring data should be collected for nitrogen dioxide during the additional testing. In as much as the exact effects of windspeed and temperature on the other exhaust components cannot be determined with certainty, prudence would dictate that the more potent exhaust components (carbon monoxide, sulfur dioxide, and sulfuric acid) also be reassessed. Reassessment of particulates and polycyclic aromatic hydrocarbons, although not detected in any appreciable amounts during the initial test effort, should also be considered.

Carbon dioxide and total hydrocarbons can be dropped from future testing efforts. The current test results indicate that severe exposures to these substances are extremely unlikely.

A clear description of magazine ventilation could not be achieved during this investigation. Because ambient weather conditions (e.g., windspeed) can profoundly alter the ventilation of ammunition magazines, it would be useful to perform a detailed trace gas study of a Stradley-type magazine. Information obtained from such an investigation would be valuable in that it would allow the Army to extrapolate test results of indoor air quality in Stradley magazines to other magazine designs and other structures.

- Name Tolk?

#### REFERENCES

- 1. Cudding, R. G., et al. Potential Health Risks From Increased Use of Diesel Light-Duty Vehicles. Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico. PB82-244013, 1982.
- Lippman, M. and R. B. Schlensinger. Chemical Contamination in the Human Environment. Oxford University Press, New York. 1979.
- Levins, P. L., et al. Chemical Analysis of Diesel Exhaust Odor Species. SAE Tech. Paper 740216, 1974.
- 4. General Industry Safety and Health Standards--Toxic and Hazardous Substances. Code of Federal Regulations, Title 29, Chapter XVII, Part 1910, Subpart 2, 47 FR 51117, November 1982.
- 5. U.S. Department of Health and Human Services. NIOSH Manual of Analytical Methods. DHHS (NIOSH) Publication No. 82-100, August 1981.

APPENDIX A

SAMPLING PROCEDURES AND ANALYTICAL METHODS

# CONTENTS

| Subject                                                        | Page        |
|----------------------------------------------------------------|-------------|
| Carbon Dioxide (NIOSH Ref. Method \$249)                       | <b>A-3</b>  |
| Nitrogen Dioxide and Nitric Oxide (NIOSH Ref. Method 231)      | <b>A</b> -9 |
| Odorants (DOAS/Chromasorb 102 Method)                          | A-18        |
| Organic Solvents in Air (NIOSH Ref. Method 127)                | A-19        |
| Particulates (NIOSH Ref. Method S29)                           | A-26        |
| Sulfates, Sulfites, and Sulfur Dioxide (NIOSH Ref. Method 268) | A-29        |
| Polycyclic Aromatic Hydrocarbons (NIOSH Ref. Method 205)       | A-35        |

#### Carbon Dioxide

Analyte:

Carbon Dioxide

Method No.: \$249

Matrix:

Air

Range: 2270-10000 ppm

OSHA Standard: 5000 ppm (9000 mg/cu m)

Precision  $(\overline{CV}_{T})$ : 0.014

Validation Date: 10/29/76

Procedure:

Collection in gas sampling bag, GC with

thermal conductivity

detector

### 1. Principle of the Method

- 1.1 A known volume of air is collected in a five-layer gas sampling bag by means of a low flow rate personal sampling pump capable of filling a bag.
- 1.2 The carbon dioxide content of the samples is determined by gas chromatography using a thermal conductivity detector.

## 2. Range and Sensitivity

- 2.1 This method was validated over the range of 2270-9990 ppm at an atmospheric temperature of 20.5°C and atmospheric pressure of 757 mm Hg using a 3.5 liter sample volume. The working range of the method is estimated to be 500-15000 ppm, under the experimental conditions cited.
- 2.2 The upper limit of the range of the method and the absolute sensitivity have not been established.

### 3. Interferences

- 3.1 When two or more compounds are known or suspected to be present in the air, such information, including their suspected identities, should be transmitted with the sample.
- 3.2 It must be emphasized that any compound which has the same retention time as the analyte at the operating conditions described in this method is an interference. Retention time data on a single column cannot be considered as proof of chemical identity.
- 3.3 If the possibility of interference exists, separation conditions (column packing, temperature, etc.) must be changed to circumvent the problem.

### 4. Precision and Accuracy

- 4.1 The Coefficient of Variation (CV<sub>T</sub>) for the total analytical and sampling method in the range of 2270-9990 ppm was 0.014. This value corresponds to a 69-ppm standard deviation at the OSHA standard level. Statistical information and details of the validation and experimental test procedures can be found in References 11.1 and 11.2.
- 4.2 On the average, the concentrations obtained at the OSHA standard level using the overall sampling and analytical method were 2.5% lower than the "true" concentrations for a limited number of laboratory experiments. Any difference between the "found" and "true" concentrations may not represent a hias in the sampling and analytical method, but rather a random variation from the experimentally determined "true" concentration. Therefore, no recovery correction should be applied to the final result.

# 5. Advantages and Disadvantages of the Method

- 5.1 The sampling device is small, portable, and involves no liquids. Interferences are minimal, and most of those which do occur can be eliminated by altering chromatographic conditions. The samples in bags are analyzed by means of a quick instrumental method.
- 5.2. One disadvantage of the method is that the gas sampling ba; is rather bulky and may be punctured during sampling and ship; ing.

### 6. Apparatus

- 6.1 Personal Sampling Pump. A personal sampling pump capable of filling a bag at approximately 0.05 liter per minute is required. This pump should be calibrated to within ±5%.
- 6.2 Gas Sampling Bag. 5-liter capacity; only the five-layer sampling bags manufactured by Calibrated Instruments, Inc. (731 Saw Mill Road, Ardsley, New York 10502) were found to be satisfactory for sample collection and storage for at least 7 days. The bag is fitted with a metal valve and hose bib. For the preparation of calibration standards in the laboratory, 5-liter Saran or Tedlar bags could be used.
- 6.3 Gas Chromatograph. The unit must be equipped with a thermal conductivity detector and a 5-milliliter gas sampling loop or equivalent. A portable unit with no column temperature control is adequate.
- 6.4 Column. (5-ft x 1/4-in stainless steel) packed with 80/100 mesh Porapak QS.
- 6.5 Area Integrator. An electronic integrator or some other suitable method for measuring peak areas.

- 6.6 Gas-tight syringes. 10-ml and other convenient sizes for making standards.
- 6.7 Calibrated Rotameters. convenient sizes for making standards.

### 7. Reagents

- 7.1 Carbon dioxide, 99% or higher purity.
- 7.2 Nitrogen, purified.
- 7.3 Helium, purified.
- 7.4 Air, filtered compressed.

### 8. Procedure

8.1 Cleaning of Sampling Bags and Checking for Leaks. The bags are cleaned by opening the closure mechanism and bleeding out the air sample. The use of a vacuum pump is recommended although this procedure can be carried out by manually flattening the bags. The bags are then flushed with carbon dioxide-free air and evacuated. This procedure is repeated at least twice.

Bags may be checked for leaks by filling the bag with air until taut, sealing and applying gentle pressure to the bag. Observe for any discernable leaks and any volume changes or slackening of the bag, preferably over at least a one-hour period.

- 8.2 Calibration of Personal Pumps. Each personal pump should be calibrated to minimize errors associated with uncertainties in the sample volume collected. Although sample volume is not actually used in this determination, the pump should be calibrated to avoid over filling the bags; i.e., a maximum sampling time can be determined based on flow rate and sample volume which is approximately equal to 80% volume of bag.
- 8.3 Collection and Shipping of Samples.
  - 8.3.1 Immediately before sampling, attach a small piece of Tygon or plastic tubing to the hose bib of the five-layer gas sampling bag.
  - 8.3.2 Unscrew the valve fitting and attach the tubing to the outlet of the sampling pump.
  - 8.3.3 Air being sampled will pass through the pump and tubing before entering the sampling bag, since a "push" type pump is required.
  - 8.3.4 A sample size of 3-4 liters is recommended. Sample at a flow rate of 0.05 liters per minute or less, but not less than 0.01 liters per minute. The flow rate should be known with an accuracy of at least + 5%.

- 8.3.5 The temperature and pressure of the atmosphere being sampled should be recorded. If pressure reading is not available, record the elevation.
- 8.3.6 The gas sampling bag should be labeled appropriately and sealed tightly.
- 8.3.7 Gas sampling bags should be packed loosely and padded before they are shipped to minimize the danger of getting punctured during shipping.

### 8.4 Analysis of Samples

- 8.4.1 GC Conditions. The typical operating conditions for the gas chromatograph are:
  - 1. 100 ml/min (25 psig) helium carrier gas flow
  - 2. Ambient injector temperature
  - 3. 70°C manifold temperature (detector)
  - 4. Ambient column temperature

A retention time of approximately 2 minutes is to be expected for the analyte under these conditions and at ambient temperatures of 20-25°C using the column recommended in Section 6.4. The carbon dioxide elutes after oxygen and nitrogen.

- 8.4.2 GC Analysis. The gas sampling bag is attached to the sample loop of the GC unit via a short piece of tubing. Open the closure valve of the gas sampling bag and fill the 5-ml sample loop by gently squeezing the sample bag. To allow the sample in the loop to attain atmospheric pressure, release the pressure applied to the sample bag just prior to turning the sample loop valve to inject the sample onto the column.
- 8.4.3 Measurement of area. The area of the sample peak is measured by an electronic integrator or some other suitable form of area measurement, and the results are read from a standard curve as discussed in Section 9.

### 9. Calibration and Standards

9.1 Completely evacuate a 5-liter gas sampling bag, preferably with the aid of a vacuum pump. Introduce 1.0 liter of filtered air via a septum into the bag; this can be done using a calibrated rotameter. Then add a known volume of carbon dioxide gas through a septum and add more air to a total accurately known volume of

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

between 3-4 liters. It is necessary to know accurately the volume of carbon dioxide added and the total volume of air to determine concentration in ppm. The concentration in ppm is equal to the volume of carbon dioxide divided by the sum of the volume of carbon dioxide and the volume of air.

9.2 A series of standards, varying in concentration over the range of interest, is prepared as described above and analyzed under the same GC conditions and during the same time period as the unknown samples. Curves are established by plotting concentration in ppm versus peak area. Corrections for the unknown carbon dioxide concentration in the filtered air must be made if necessary. The carbon dioxide correction factor can be determined by filling an evacuated bag with 3-4 liters of the filtered air used for preparing the calibration standards. This "blank" air is analyzed under the same conditions as the calibration standards and the samples. The "blank" area thus determined is subtracted from the peak area of each calibration standard. A calibration curve is established by plotting concentration in ppm versus corrected peak area.

Note: Calibration standards should be analyzed at the same time the sample analysis is done. This will minimize the effect of variations in detector response.

### 10. Calculations

- 10.1 Read the concentration in ppm, corresponding to each peak area from standard curve.
- 10.2 Another method of expressing concentration is mg/cu m (corrected to standard conditions of 25°C and 760 mm Hg).

$$mg/cu = ppm \times \frac{MN}{24.45} \times \frac{760}{P} \times \frac{(T + 273)}{298}$$

where:

P = pressure (mg Hg) of air sampled

T = temperature (°C) of air sampled

24.45 = molar volume (liter/mole) at 25°C and 760 mm Hg

MW = molecular weight

760 = standard pressure (mm Hg)

298 = standard temperature (\*K)

## 11. References

11.1 Memoranda, Kenneth A. Busch, Chief, Statistical Services, KLCD, to Deputy Director, DLCD, dated 1/16/75, 11/8/74, subject: "Statistical Protocol for Analysis of Data from Contract CDC-99-74-45."

Washing to the

11.2 Backup Data Report for Carbon Dioxide, prepared under NIOSH Contract No. 210-76-0123.

AND THE PROPERTY OF THE PARTY O

#### NITROGEN DIOXIDE AND NITRIC OXIDE IN AIR

# Measurements Support Branch

# **Analytical Method**

Analyte Nitrogen Dioxide

Method No.:

P&CAM 231

THE PROPERTY OF THE PARTY OF TH

and Nitric Oxide

Range 0.8 to 30 ppm of NO<sub>2</sub>

Matrix Air

or NO in a 1-liter sample

Procedure Solid sorbent collection, triethanol-amine extraction, spec-

Precision(CVT) NO<sub>2</sub>, 0.07 at 0.5 to 5 ppm; NO, 0.06 at

12.5 to 50 ppm

trophotometry

Classification D (Operational)

Date Issued 6:30 76

Date Revised

Principle of the Method

Nitrogen dioxide (NO<sub>2</sub>) and nitric oxide (NO) are collected from air in a three-section sorbent tube. The NO<sub>2</sub> is absorbed in the first section, which contains triethanolamine (TEA) impregnated on molecular sieve. The NO is converted to NO<sub>2</sub> by a proprietary oxidizer in the second section. The NO<sub>2</sub> thus formed from the NO is absorbed in the third section by another bed of TEA-impregnated molecular sieve. The first and third sections are desorbed with solutions of TEA in water and the nitrite in these solutions is determined spectrophotometrically by the Griess-Saltzman reaction. (Reference 11.1) The nitrite found in the first section is reported as NO<sub>2</sub> and the nitrite in the third section is reported as NO

#### Range and Sensitivity

- 2.1 The linear range of the standard curve is from 0.5 to 18 µg of nitrite in 10 mC of desorbing solution, which corresponds in this method to a range of 0.8 to 30 ppm of NO<sub>2</sub> or NO in a 1-liter sample of air
- 2.2 The sensitivity is 0.4 µg'10 ml for an absorbance of 0.04
- 2.3 The upper limit of the range can be extended by taking smaller aliquots for analysis, or be diluting intensely colored solutions with water.

## 3. Interferences

3.1 Inorganic nitrites cause positive interference.

- 3.2 Nitric acid and nitrates do not interfere.
- 3.3 Ammonia does not interfere.

## 4. Precision and Accuracy

- 4.1 The average recovery for 22 samples in the range 0.5 to 5 ppm of NO<sub>2</sub> was greater than 96% and the coefficient of variation was 0.07.
- 4.2 For 18 samples the average recovery of NO varied with the amount of NO collected. The recovery was 100% at 12.5 ppm. At 25 ppm only 84% recovery was achieved, and at 50 ppm only 67%. However, the coefficient of variation over the range was only 0.06. The recovery may vary depending upon the sample flow rate and the properties of the particular lot of oxidizer used. Each laboratory should determine the efficiency of the sampling tubes employed.
- 4.3 The accuracy of the overall sampling and analytical method has not been determined.

# 5 Advantages and Disadvantages of the Method

- 5.1 Both nitrogen dioxide and nitric oxide are collected simultaneously.
- 5.2 This method is simple and convenient for field sampling.
- 5.3 Samples can be stored at ambient temperature for at least 10 days without any effect on the results.
- 5.4 At 50 ppm of NO the collection efficiency is poor (about 67%) because the oxidizer is consumed.
- 5.5 If high humidity or water mist is present, the breakthrough volume can be severely reduced. If water condenses in the tube, NO<sub>2</sub> and NO may not be collected quantitatively.

# 6 Apparatus

## 6 | Sampling Equipment

6.1.1 Solid sorbent tubes are made in the following manner. Using a gas-oxygen torch, heat a section of 5-mm i.d., 7-mm o.d. Pyrex glass tubing and pull it

apart to form a tube approximately 15 cm long with a taper 2 cm long. Seal the tapered end of the tube in the flame. Allow it to cool, then insert a small plug of glass wool through the open end of the tube; push the glass wool through the open end of the tube with a thin wooden stick and pack gently. Weigh 400 mg of TEA sorbent and pour the material into the tube. (See Section 7.2) Gently tap the tube on the table top several times to ensure uniform packing. Insert another small plug of glass wool to keep the TEA sorbent in place. For the next section, pour 800 mg of oxidizer into the tube. (See Section 7.1.) Again tap the tube and insert a plug of glass wool, pack lightly. Insert another plug of glass wool, maintaining an air gap of 12 mm between these two plugs. Weigh 400 mg of TEA sorbent and pour the material into the tube. Carefully tap the tube and gently pack another glass wool plug without closing the 12-mm air gap. Seal the open end of the tube with the torch. See the figure on page 231-9.

- A personal sampling pump that can provide a flow rate of 50 mL/min within 5% accuracy is required. The pump should be calibrated with a representative sorbent tube in the sampling line. A dry or wet test meter or glass rotameter that will determine the flow rate to within 5% may be used for the calibration.
- 6.2 Spectrophotometer capable of measurements at 540 nm.
- 6.3 Matched glass cells or cuvettes, 1-cm path length.
- 6.4 Assorted laboratory glassware: pipettes, glass-stoppered graduated cylinders, and volumetric flasks of appropriate sizes.

## 7. Reagents

- 7.1 Oxidizer. Proprietary material Number 1900277 from the Dragerwerk Company of West Germany, supplied through its U.S. distributor, National Mine Safety Company, or the equivalent.
- 7.2 TEA Sorbent. Place 25 g of triethanolamine in a 250-ml beaker; add 4 g of glycerol. 50 ml of acetone and sufficient distilled water to bring the volume up to 100ml. To the mixture add about 50 ml of Type 13X, 30/40-mesh Molecular Sieve. Stir and let stand in a covered beaker for about 30 min. Decant the excess liquid, and transfer the molecular sieve to a porcelain pan. Place the pan under a heating lamp until most of the moisture has evaporated. Complete the drying in an oven at 110°C for 1 hr The sorbent should be free flowing. Store it in a closed glass container.

A STATE OF THE STA

- 7.3 Desorbing Solution. Dissolve 15.0 g of triethanolamine in approximately 500 mg of distilled water, add 0.5 mg of n-butanol, and dilute to 1 liter.
- 7.4 Hydrogen Peroxide, 0.02%(v/v). Dilute 0.2 mf of 30% hydrogen peroxide to 250 mf with distilled water.
- 7.5 Sulfanilamide Solution. Dissolve 10 g of sulfanilamide in 400 ml of distilled water. Add 25 ml of concentrated phosphoric acid, mix well, and dilute to 500 ml.
- 7.6 NEDA Solution. Dissolve 0.5 gm of N-(1-naphthyl)ethylenediamine dihydrochloride in 500 mC of distilled water.
- 7.7 Nitrite Stock Standard Solution (100  $\mu$ g/m2). Dissolve 0.1500 g of reagent grade sodium nitrite in distilled water and dilute to 1 liter.

#### 8. Procedure

- 8.1 Cleaning of Equipment. Wash all glassware with detergent solution, soak in nitric acid. rinse in tap water and distilled water, and then rinse thoroughly with double distilled water.
- 8.2 Collection and Shipping of Samples
  - 8.2.1 Before sampling, break open the ends of the sorbent tube to provide an opening that is approximately one-half the internal diameter of the tube.
  - The air must flow through the 12-mm air space before it flows through the oxidizer. Therefore attach the end of the tube without the air gap between the oxidizer section and TEA sorbent section to the pump with a length of small diameter Tygon® tubing.
  - 8.2.3 Mount the tube in a vertical position to avoid channeling
  - 8.2.4 The air being sampled should not pass through any hose or tubing before it enters the sorbent tube.
  - 8.2.5 Turn on the pump to begin sample collection. Sample at a flow rate of 50 ml/min or less to obtain a maximum sample volume of 1 liter. Measure the flow rate and time, or volume, as accurately as possible. If a low flow rate pump is used, set the rate to an approximate value and record the initial and final stroke counter readings. Obtain the sample volume by multiplying the number of strokes by the stroke volume.
  - 8.2.6 Measure and record the temperature and pressure of the atmosphere being sampled.

- Marie Control of the American

- 8.2.7 Cap the sorbent tubes with 7-mm i.d. plastic caps immediately after sampling. (Masking tape can be substituted for the plastic caps.)
- 8.2.8 With each batch of samples, submit one blank sorbent tube. This tube is handled in the same manner as the other tubes (break, seal, and transport) except that no air is drawn through it. When more than ten samples are submitted, include an additional blank for every ten samples.
- 8.2.9 Pack the capped sorbent tubes tightly and pad them to minimize breakage during shipping

## 8.3 Analysis of Samples

- 8.3.1 With tweezers remove and discard the glass wool plugs from an exposed sorbent tube and transfer each TEA sorbent bed to separate. 25-mg glass-stoppered graduated cylinders. Label the graduated cylinder as to the location of the TEA sorbent with respect to the oxidizer section
- 8.3.2 To each graduated cylinder add enough of the desorbing solution to make the volume up to 20 mR, and shake the mixture vigorously for about 30 sec
- 8.3.3 Allow a few minutes for the solids to settle, and then transfer 10 m<sup>2</sup> to another 25-m<sup>2</sup> glass-stoppered graduated cylinder.
- 8.3.4 Develop the color of the solution for 10 min in the same manner as described for the preparation of the standard curve (Sections 9.4 to 9.6). From the standard curve determine the amount of nitrite in the 10-ms aliquot.

## 8.4 Determination of Collection and Desorption Efficiencies

8.4.1 Importance of Determination. The collection and desorption efficiencies of a given compound can vary from one laboratory to another and also from one batch of sorbent tubes to another. Thus, it is necessary to determine at least once the percentages of sample collected and then removed in the desorption process. Results indicate that the recovery of NO varies with the amount of NO collected, particularly at higher concentrations (for example, at 50 ppm).

- 8.4.2 Procedure for Determining Collection and Desorption Efficiencies. Sorbent tubes from the same batch as that used in obtaining samples are used in this determination. Known volumes of NO<sub>2</sub> and NO are injected into a bag containing a known volume of air. The bag is made of Tedlar (or another material that will not absorb NO<sub>2</sub> or NO) and should have a gas sampling valve and a septum injection port. The concentrations of NO<sub>2</sub> and NO in the bag may be calculated at room temperature and pressure. A measured volume is then sampled through a sorbent tube with a calibrated sampling pump. At least five tubes are prepared in this manner. These tubes are desorbed and analyzed in the same manner as the samples (Section 8.3).
- 8 4.3 Calculation of Desorption Efficiency. The desorption efficiency (D.E.) is the average concentration (corrected for the blank) of NO<sub>2</sub> or NO found by analysis of the sorbent tubes divided by the concentration of NO<sub>2</sub> or NO in the bag

## 9. Calibration and Standards

- 9.1 Dilute 2 m $\xi$  of the nitrite stock standard (100  $\mu$ g/m $\xi$ ) to 100 m $\xi$  with the desorbing solution to prepare a solution with a nitrite concentration of 2  $\mu$ g/m $\xi$ .
- 9.2 To a series of 25-mg glass-stoppered graduated cylinders add 1, 3, 5, 7, and 9 mg of the dilute standard solution
- 9.3 Add enough of the absorbing solution to bring the volume in each cylinder up to 10 m<sup>2</sup> to prepare working standards with nitrite concentrations of 2, 6, 10, 14, and 18 µg 10 m<sup>2</sup>
- 9.4 To each graduated cylinder, add 1 mg of the 0.02% hydrogen peroxide solution, 10 mg of the sulfanilamide solution, and 1.4 mg of the NEDA solution, with thorough mixing after the addition of each reagent
- 9.5 Allow 10 min for complete color development
- 9.6 Measure the absorbance of the solutions at 540 nm, using a reagent blank in the reference cell.
- 9.7 Prepare a standard curve by plotting absorbance versus weight of nitrite (in µg) in 10 ml of the desorbing solution

## 10. Calculations

10.1 From the standard curve, read the weight of nitrite (in µg) in 10 mf of the desorbing solution corresponding to the absorbance of the sample solution. Multiply this weight by 2 to determine the total amount (in µg) of nitrite extracted with 20 mf of desorbing solution from the sorbent section being analyzed. The calibration procedure is based upon the empirical observation that 0.63 mole of sodium nitrite produces the same absorbance in the color-developed solution as 1 mole of NO<sub>2</sub>. (See Reference 11.2.) Divide the amount of nitrite desorbed from the sorbent material by 0.63 to determine the apparent amount of NO<sub>2</sub> collected in the sorbent section. These calculations are summarized in the following equation:

$$W = \frac{\mu_E NO^2 \times 2}{0.63}$$

where W = weight (in µg) of NO2 found

10.2 Correct the amount of NO<sub>2</sub> calculated in Section 10.1 for the amount of NO<sub>2</sub>, if any, found on the corresponding sorbent section of a blank tube to obtain the amount of NO<sub>2</sub> in the sample, as follows

$$W_{s} = W_{s} - W_{p}$$

where  $W_S$  = corrected weight (in  $\mu g$ ) of NO<sub>2</sub> in sample.

 $W_b = weight (in \mu g) of NO<sub>2</sub> in the corresponding section of a blank tube$ 

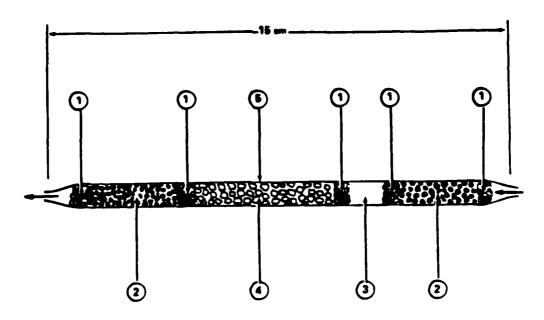
10.3 The concentration of NO<sub>2</sub> in parts per million (ppm) by volume in the air sample is calculated as follows

$$ppm = \frac{W_5}{V} \times \frac{24.45}{M.W.} \times \frac{760}{P} \times \frac{T+273}{298}$$

where V = volume (liters) of air sampled

M W.= molecular weight.

24.45= molar volume (liter/mole) at 25°C and 760 mmHg


P = pressure (mmHg) of air sampled

T = temperature (C) of air sampled

10.4 The ppm of NO2 found in the third section (downstream from the oxidizer) is reported as ppm of NO.

# 11. References

- 11.1 Saltzman, B.E. "Colorimetric Microdetermination of Nitrogen Dioxide in the Atmosphere," Anal. Chem., 26, 1949 (1954).
- 11.2 Blacker, J. H., "Triethanolamine for Collecting Nitrogen Dioxide in the TLV Range," Am. Ind. Hyg. Assoc. J., 34, 390 (1973).
- 11.3 NIOSH Sampling Data Sheet No. 32.01, "NIOSH Manual of Sampling Data Sheets," Measurements Research Branch, Division of Physical Sciences and Engineering. National Institute for Occupational Safety and Health, December 22, 1975.
- 11.4 Willey, M.A., C. S. McCammon, Jr., and L. J. Doemeny, "A Solid Sorbent Personal Sampling Method for the Simultaneous Collection of Nitrogen Dioxide and Nitric Oxide in Air," presented at the American Industrial Hygiene Association Conference, Atlanta, Georgia, May 1976.



- 1. GLASS WOOL PLUGS
- 2. TEA SORBENT, 400 mg
- 3. AIR GAP, 12 mm
- 4. OXIDIZER, 800 mg
- 5. GLASS TUBE, 5 mm ild

SORBENT TUBE FOR NO2 and NO

## **ODORANTS**

To satisfy the need for an objective analytical technique for assessing diesel exhaust odorants as a group, the Diesel Odor Analysis System (DOAS) has been selected for use during this study.\* The sampling portion of the DOAS method is based on the collection of filtered exhaust emissions over Chromosorb 102 adsorbent. The analytical portion of DOAS is performed by elution of the adsorbent with cyclohexane, separation with methanol, and analysis using silica gel liquid chromatography with ultraviolet absorption detection. The method separates the total organic extract into paraffinic and aromatic, and polar (oxygenated) fractions. Because previous sensory studies have shown that smoky-burnt odors are the prime contributors to the total diesel exhaust odor and that the smoky-burnt odor is associated with the polar (oxygenated) fraction, this fraction best assesses the total intensity of the odor or aroma.

The total intensity of the aroma (TIA) scale has been generally accepted as a useful means to subjectively quantify odors when the risks to human judges are low. During potentially high risk exposures, the DOAS produces results that can be compared with the TIA scale. A number of studies have shown that the DOAS method gives good correlation with diesel odor intensity as measured on the TIA scale. Equation 1 is used to estimate the TIA from DOAS polar fraction (methanol extract) data.

$$TIA = 1.0 + 1.0 \log_{10}^{f}$$

Eq. 1

where: f = the polar fraction in mg/m<sup>3</sup>

With  $r^2$  = 0.996, and 26 = 0.32, the  $\pm 0.32$  TIA 95 percent confidence limits are better than normally observed (0.4) in odor observations.

Levins, P.L., et al. Chemical Analysis of Diesel Exhaust Odor Species. SAE Tech. Paper 740216, 1974.

# ORGANIC SOLVENTS IN AIR

# Physical and Chemical Analysis Branch

## **Analytical Method**

Analyte:

Organic Solvents (See Table 1)

Method No.:

**P&CAM 127** 

Matrix:

Air

Range:

For the specific

Procedure:

Adsorption on charcoal

compound, refer to Table 1

desorption with carbon

disulfide, GC

Precision:

10.5% RSD

Date Issued: Date Revised: 9 15 72 2 15 77

Classification:

See Table 1

#### 1. Principle of the Method

- 1.1 A known volume of air is drawn through a charcoal tube to trap the organic vapors present
- 1.2 The charcoal in the tube is transferred to a small, graduated test tube and desorbed with carbon disulfide.
- 1.3 An aliquot of the desorbed sample is injected into a gas chromatograph.
- 1.4 The area of the resulting peak is determined and compared with areas obtained from the injection of standards.

#### 2. Range and Sensitivity

The lower limit in mg sample for the specific compound at 16 × 1 attenuation on a gas chromatograph fitted with a 10.1 splitter is shown in Table 1. This value can be lowered by reducing the attenuation or by eliminating the 10.1 splitter.

#### 3. Interferences

- 3.1 When the amount of water in the air is so great that condensation actually occurs in the tube, organic vapors will not be trapped. Preliminary experiments indicate that high humidity severely decreases the breakthrough volume
- 3.2 When two or more solvents are known or suspected to be present in the air, such information (including their suspected identities), should be transmitted with the sample, since with differences in polarity, one may displace another from the charcoal.
- 3.3 It must be emphasized that any compound which has the same retention time as the specific compound under study at the operating conditions described in this method is an interference. Hence, retention time data on a single column, or even on a number of columns, cannot be considered as proof of chemical identity. For this reason it is important that a sample of the bulk solvent(s) be submitted at the same time so that identity(ies) cap be established by other means.

3.4 If the possibility of interference exists, separation conditions (column packing, temperatures, etc.) must be changed to circumvent the problem.

# 4. Precision and Accuracy

- 4.1 The mean relative standard deviation of the analytical method is 8% (11.4).
- 4.2 The mean relative standard deviation of the analytical method plus field sampling using an approved personal sampling pump is 10% (11.4). Part of the error associated with the method is related to uncertainties in the sample volume collected. If a more powerful vacuum pump with associated gas-volume integrating equipment is used, sampling precision can be improved.
- 4.3 The accuracy of the overall sampling and analytical method is 10% (NIOSH-unpublished data) when the personal sampling pump is calibrated with a charcoal tube in the line.

## 5. Advantages and Disadvantages of the Method

- 5.1 The sampling device is small, portable, and involves no liquids. Interferences are minimal, and most of those which do occur can be eliminated by altering chromatographic conditions. The tubes are analyzed by means of a quick, instrumental method. The method can also be used for the simultaneous analysis of two or more solvents suspected to be present in the same sample by simply changing gas chromatographic conditions from isothermal to a temperature-programmed mode of operation.
- 5.2 One disadvantage of the method is that the amount of sample which can be taken is limited by the number of milligrams that the tube will hold before overloading. When the sample value obtained for the backup section of the charcoal tube exceeds 25% of that found on the front section, the possibility of sample loss exists. During sample storage, the more volatile compounds will migrate throughout the tube until equilibrium is reached (33% of the sample on the backup section).
- 5.3 Furthermore, the precision of the method is limited by the reproducibility of the pressure drop across the tubes. This drop will affect the flow rate and cause the volume to be imprecise, because the pump is usually calibrated for one tube only.

## 6. Apparatus

- 6.1 An approved and calibrated personal sampling pump for personal samples. For an area sample, any vacuum pump whose flow can be determined accurately at 1 liter per minute or less
- 6.2 Charcoal tubes: glass tube with both ends flame sealed, 7 cm long with a 6-mm O.D. and a 4-mm I.D., containing 2 sections of 20 40 mesh activated charcoal separated by a 2-mm portion of urethane foam. The activated charcoal is prepared from coconut shells and is fired at 600°C prior to packing. The absorbing section contains 100 mg of charcoal, the backup section 50 mg. A 3-mm portion of urethane foam is placed between the outlet end of the tube and the backup section. A plug of silylated glass wool is placed in front of the absorbing section. The pressure drop across the tube must be less than one inch of mercury at a flow rate of 1 lpm.
- 6.3 Gas chromatograph equipped with a flame ionization detector.
- 6.4 Column (20 ft × 16 in) with 10% FFAP stationary phase on 80 100 mesh, acid-washed DMCS Chromosorb W solid support. Other columns capable of performing the required separations may be used.

- 6.5 A mechanical or electronic integrator or a recorder and some method for determining peak area.
- 6.6 Microcentrifuge tubes, 2.5 ml, graduated.
- 6.7 Hamilton syringes: 10 µl, and convenient sizes for making standards.
- 6.8 Pipets: 0.5-ml delivery pipets or 1.0-ml type graduated in 0.1-ml increments.
- 6.9 Volumetric flasks: 10 ml or convenient sizes for making standard solutions.

# 7. Reagents

- 7.1 Spectroquality carbon disulfide (Matheson Coleman and Bell).
- 7.2 Sample of the specific compound under study, preferably chromatoquality grade
- 7.3 Bureau of Mines Grade A helium
- 7.4 Prepurified hydrogen
- 7.5 Filtered compressed air

#### 8. Procedure

- 8.1 Cleaning of Equipment: All glassware used for the laboratory analysis should be detergent washed and thoroughly rinsed with tap water and distilled water.
- 8.2 Calibration of Personal Pumps. Each personal pump must be calibrated with a representative charcoal tube in the line. This will minimize errors associated with uncertainties in the sample volume collected.

# 8.3 Collection and Shipping of Samples

- 8.3.1 Immediately before sampling, the ends of the tube should be broken to provide an opening at least one-half the internal diameter of the tube (2 mm).
- 8.3.2 The small section of charcoal is used as a back-up and should be positioned mearest the sampling pump.
- 8.3.3 The charcoal tube should be vertical during sampling to reduce channeling through the charcoal.
- 8.3.4 Air being sampled should not be passed through any hose or tubing before entering the charcoal tube.
- 8.3.5 The flow, time, and or volume must be measured as accurately as possible. The sample should be taken at a flow rate of 1 lpm or less to attain the total sample volume required. The minimum and maximum sample volumes that should be collected for each solvent are shown in Table 1. The minimum volume quoted must be collected if the desired sensitivity is to be achieved.
- 8.3 6 The temperature and pressure of the atmosphere being sampled should be measured and recorded
- 8.3.7 The charcoal tubes should be capped with the supplied plastic caps immediately after sampling. Under no circumstances should rubber caps be used.
- 8.3.8 One tube should be handled in the same manner as the sample tube (break, seal, and transport), except that no air is sampled through this tube. This tube should be labeled as a blank.
- 8.3.9 Capped tubes should be packed tightly before they are shipped to minimize tube breakage during shipping.

8.3.10 Samples of the suspected solvent(s) should be submitted to the laboratory for qualitative characterization. These liquid bulk samples should not be transported in the same container as the samples or blank tube. If possible, a bulk air sample (at least 50 l air drawn through tube) should be shipped for qualitative identification purposes.

#### 8.4 Analysis of Samples

- 8.4.1 Preparation of Samples. In preparation for analysis, each charcoal tube is accord with a file in front of the first section of charcoal and broken open. The glass wool is removed and discarded. The charcoal in the first (larger) section is transferred to a small stoppered test tube. The separating section of foam is removed and discarded; the second section is transferred to another test tube. These two sections are analyzed separately.
- 8.4.2 Desorption of Samples. Prior to analysis, one-half ml of carbon disulfide is pipetted into each test tube. (All work with carbon disulfide should be performed in a hood because of its high toxicity.) Tests indicate that desorption is complete in 30 minutes if the sample is stirred occasionally during this period.
- 8.4.3 GC Conditions. The typical operating conditions for the gas chromatograph are:
  - 1. 85 cc/min. (70 psig) helium carrier gas flow.
  - 2. 65 cc/min. (24 psig) hydrogen gas flow to detector.
  - 3. 500 cc min. (50 psig) air flow to detector.
  - 4. 200°C injector temperature.
  - 5. 200°C manifold temperature (detector).
  - 6. Isothermal oven or column temperature refer to Table 1 for specific compounds.
- 8.4.4 Injection. The first step in the analysis is the injection of the sample into the gas chromatograph. To eliminate difficulties arising from blowback or distillation within the syringe needle, one should employ the solvent flush injection technique. The 10 µl syringe is first flushed with solvent several times to wet the barrel and plunger. Three microliters of solvent are drawn into the syringe to increase the accuracy and reproducibility of the injected sample volume. The needle is removed from the solvent, and the plunger is pulled back about 0.2 µl to separate the solvent flush from the sample with a pocket of air to be used as a marker. The needle is then immersed in the sample, and a 5-µl aliquot is withdrawn, taking into consideration the volume of the needle, since the sample in the needle will be completely injected. After the needle is removed from the sample and prior to injection, the plunger is pulled back a short distance to minimize evaporation of the sample from the tip of the needle. Duplicate injections of each sample and standard should be made. No more than a 3% difference in area is to be expected.
- 8.4.5 Measurement of area. The area of the sample peak is measured by an electronic integrator or some other suitable form of area measurement, and preliminary results are read from a standard curve prepared as discussed below.

## 8.5 Determination of Description Efficiency

8.5.1 Importance of determination. The desorption efficiency of a particular compound can vary from one laboratory to another and also from one batch of charcoal to another. Thus, it is necessary to determine at least once the percentage of the specific compound that is removed in the desorption process for a given compound, provided the same batch of charcoal is used. NIOSH has found that the desorption efficiencies for the compounds in Table 1 are between 81% and 100% and vary with each batch of charcoal.

8.5.2 Procedure for determining desorption efficiency. Activated charcoal equivalent to the amount in the first section of the sampling tube (100 mg) is measured into a 5-cm, 4-mm I.D. glass tube, flame-sealed at one end (similar to commercially available culture tubes). This charcoal must be from the same batch as that used in obtaining the samples and can be obtained from unused charcoal tubes. The open end is capped with Parafilm. A known amount of the compound is injected directly into the activated charcoal with a microliter syringe, and the tube is capped with more Parafilm. The amount injected is usually equivalent to that present in a 10-liter sample at a concentration equal to the federal standard.

At least five tubes are prepared in this manner and allowed to stand for at least overnight to assure complete absorption of the specific compound onto the charcoal. These five tubes are referred to as the samples. A parallel blank tube should be treated in the same manner except that no sample is added to it. The sample and blank tubes are desorbed and analyzed in exactly the same manner as the sampling tube described in Section 8.4.

Two or three standards are prepared by injecting the same volume of compound into 0.5 ml of CS2 with the same syringe used in the preparation of the sample. These are analyzed with the samples

The desorption efficiency equals the difference between the average peak area of the samples and the peak area of the blank divided by the average peak area of the standards, or

#### 9. Calibration and Standards

It is convenient to express concentration of standards in terms of mg 0.5 ml CS2 because samples are desorbed in this amount of CS2. To minimize error due to the volatility of carbon disulfide, one can inject 20 times the weight into 10 ml of CS2. For example, to prepare a 0.3 mg 0.5 ml standard, one would inject 6.0 mg into exactly 10 ml of CS2 in a glass-stoppered flask. The density of the specific compound is used to convert 6.0 mg into microliters for easy measurement with a microliter syringe. A series of standards, varying in concentration over the range of interest, is prepared and analyzed under the same GC conditions and during the same time period as the unknown samples. Curves are established by plotting concentration in mg 0.5 ml versus peak area.

NOTE Since no internal standard is used in the method, standard solutions must be analyzed at the same time that the sample analysis is done. This will minimize the effect of known day-to-day variations and variations during the same day of the FID response.

#### 10. Calculations

- 10.1 The weight, in mg. corresponding to each peak area is read from the standard curve for the particular compound. No volume corrections are needed, because the standard curve is based on mg. 0.5 ml CS, and the volume of sample injected is identical to the volume of the standards injected.
- 10.2 Corrections for the blank must be made for each sample

Correct mg =: mg. - mg.

where:

mg, = mg found in front section of sample tube

mg. = mg found in front section of blank tube

A similar procedure is followed for the backup sections.

- 10.3 The corrected amounts present in the front and backup sections of the same sample tube are added to determine the total measured amount in the sample.
- 10.4 This total weight is divided by the determined desorption efficiency to obtain the corrected mg per sample.
- 10.5 The concentration of the analyte in the air sampled can be expressed in mg per m'.

mg m<sup>3</sup> = 
$$\frac{\text{Corrected mg (Section 10.4)} \times 1000 \text{ (liters/m³)}}{\text{Air volume sampled (liters)}}$$

10.6 Another method of expressing concentration is ppm (corrected to standard conditions of 25°C and 760 mm Hg)

$$ppm = mg m^3 \times \frac{24.45}{MW} \times \frac{760}{P} \times \frac{(T + 273)}{298}$$

where

P = pressure (mm Hg) of air sampled

T = temperature (°C) of air sampled

24 45 = molar volume (liter 'mole) at 25 °C and 760 mm Hg

MW = molecular weight

760 = standard pressure (mm Hg)

298 = standard temperature (°K)

#### 11. References

- 11.1 White, L. D., D. G. Taylor, P. A. Mauer, and R. E. Kupel, "A Convenient Optimized Method for the Analysis of Scienced Solvent Vapors in the Industrial Atmosphere", Am Ind Hyg. Assoc J. 31.225, 1970.
- 11.2 Young, D. M. and A. D. Crowell, Physical Adsorption of Gases, pp. 137-146, Butterworths, London, 1962.
- 11.3 Federal Register, 37.202:22139-22142, October 18, 1972.
- 11.4 NIOSH Contract HSM-99-72-98, Scott Research Laboratories, Inc., "Collaborative Testing of Activated Charcoal Sampling Tubes for Seven Organic Solvents", pp. 4-22, 4-27, 1973.

TABLE 1
Parameters Associated With P&CAB Analytical Method No. 127

| Organic Solvent                           | Method<br>Chasification | Detection Hmit<br>(mg/sample) | Sample Val<br>Minimum(*) | lume (liters)<br>Maximum(*) | GC Colomb<br>Temp.(°C) | Motorular<br>Weight |
|-------------------------------------------|-------------------------|-------------------------------|--------------------------|-----------------------------|------------------------|---------------------|
| Acetone                                   | D                       | -                             | 0.5                      | 7.7                         | 60                     | 58.1                |
| Benzene                                   | A                       | 0.01                          | 0.5                      | <b>5</b> 5                  | 90                     | 78.1                |
| Carbon tetrachloride                      | A                       | 0.20                          | 10                       | 60                          | <b>6</b> 0             | 154.0               |
| Chloroform                                | A                       | 0.10                          | 0.5                      | 13                          | 80                     | 119                 |
| Dichloromethane                           | D                       | 0.05                          | 0.5                      | 3.8                         | 85                     | 84.9                |
| p-Dioxane                                 | A                       | 0.05                          | 1                        | 18                          | 100                    | 88.1                |
| Ethylene dichloride                       | D                       | 0.05                          | 1                        | 12                          | 90                     | <b>99</b> .0        |
| Methyl ethyl ketonc                       | В                       | 0.03                          | 0.5                      | 13                          | 80                     | 72 1                |
| Styrenc                                   | D                       | 0.10                          | 1.5                      | 34                          | 150                    | 104                 |
| Tetrachloroethylene                       | В                       | 0.06                          | 1                        | <b>2</b> 5                  | 130                    | 166                 |
| 1.1.2-trichloroethanc                     | В                       | 0.05                          | 10                       | 97                          | 150                    | 133                 |
| 1.1.1-trichloroethane (methyl chloroform) | В                       | 0 05                          | 0.5                      | 13                          | 150                    | 133                 |
| Trichloroethylene                         | A                       | 0 05                          | 1                        | 17                          | <b>9</b> 0             | 131                 |
| Toluene                                   | В                       | 0.01                          | 0.5                      | 22                          | 120                    | 92.1                |
| Xylenc                                    | A                       | 0.02                          | 0.5                      | 31                          | 100                    | 106                 |

<sup>(</sup>a) Minimum volume, in liters, required to measure 0.1 times the OSHA standard

<sup>(</sup>b) These are breakthrough volumes calculated with data derived from a potential plot (11.2) for activated coconut charcoal. Concentrations of vapor in air at 5 times the OSHA standard (11.3) or 500 ppm, whichever is lower, 25°C, and 760 torr were assumed. These values will be as much as 50% lower for atmospheres of high humidity. The effects of multiple contaminants have not been investigated, but it is suspected that less volatile compounds may displace more volatile compounds (Sec. 3.1 and 3.2).

#### **PARTICULATES**

#### Substance:

Inert or Nuisance Dust

#### Standard:

S-hour time-weighted average for respirable dust: 5 mg/m<sup>3</sup>

8-hour time-weighted average for total dust: 15 mg/m<sup>3</sup>

Reference: 29 CFR 1910.93

## Analytical Method:

The amount of material on a filter is determined by filter weight gain. Before sampling, the filter is pre-weighed to the nearest 0.01 mg. After sampling, the filter is reweighed. The difference in the filters weight is assumed to be the mass of material collected.

#### Sampling Equipment:

Pump: A calibrated personal sampling pump whose flow can be determined to an accuracy of  $\pm$  5%. The pump must have been calibrated with a representative filter and filter holder in line. If the respirable dust concentration is being measured, the pump must have a pulsation dampener and be certified under 30 CFR 74.

Filter Holder: 2 or 3-piece, 37-mm filter holder held together by tape or shrinking band.

Filter: 37-mm diameter, 5.0 micrometer pore size polyvinyl chloride filter or equivalent that has been pre-weighed to the nearest 0.01 mg. These filters must be hydrophobic. The filter should be supported with a back-up pad.

Cyclone: 10-mm mylon cyclone. When the respirable dust concentration is measured, it is used with a 2-piece filter holder.

Sampling Head Assembly: This assembly must hold the filter holder, cyclone, and coupler together rigidly so that air enters only at the cyclone inlet.

## Sample Size:

A minimum sampling period of 60 minutes is recommended and longer periods up to eight hours are preferable. If the respirable dust concentration is being measured, a flow rate of 1.7 liters per minute must be used. To determine total dust concentration, use a flow rate of 1.5 liters per minute.

The state of the s

# Sampling Procedure:

- 1. Assemble the filter and three-piece filter cassette and close firmly to insure that the center ring seals the edge of the filter. Examine the holder for a good filter seal. If the cassette will not seal tightly, it should be discarded. If respirable dust is being measured, the center ring is not included in the filter holder. The filter cassette should be held together by a shrinking band or tape.
- 2. If total nuisance dust is being sampled, remove the filter holder plugs. Attach the filter holder to the sampling pump with a 1/4 inch diameter, 3-foot piece of tubing and an adaptor. The adaptor is used to provide a tight connection between the filter holder and tubing.
- 3. If the respirable dust is being sampled, assemble the two-piece filter holder, coupler, cyclone, and sampling head. The sampling head rigidly holds together the cyclone and filter holder. The outlet of the sampling head is connected to the pump by a 3-foot piece of 1/4 inch flexible tubing.
- 4. Clip the cassette or cyclone assembly to the worker's lapel.
- 5. Turn the pump on and begin sample collection. The pump flow rate should be checked periodically and readjusted if necessary.
- 6. Terminate sampling after the predetermined time and note sample flow rate, collection time, and ambient temperature and pressure. If a pressure reading is unavailable, record the elevation.
- 7. Collected sample cassette should be firmly sealed with the plugs in both the inlet and outlet.
- 8. With each batch of samples, submit one filter subjected to exactly the same handling as for the samples except that no air is drawn through it. Label these as blanks.

#### Special Considerations:

- 1. Filter holders molded from cellulose-acetate-butyrate, which is commonly known as Tenite plastic, have been shown to cause blank filter weight gains and must not be used.
- The alignment of the filter holder and cyclone in the sampling head must be checked. If these parts are not aligned properly, leakage can result.
- 3. Before use, the cyclones grit cap or vortex finder should be removed and the interior of the cyclone should be inspected. If the inside of the cyclone is visibly scored, this cyclone should be discarded since the dust separation characteristics of the cyclone might be altered. If it is dirty, the interior of the cyclone should be cleaned before use. This will prevent the reentrainment of this dirt.

# Shipping:

After sampling, the samples and the blank should be shipped in a suitable container designed to prevent damage in transit.

## Reference:

"Sampling and Evaluating Respirable Coal Mine Dust", US Bureau of Mines, Pittsburgh, Pa. Information Circular 8503, February, 1971, p. 47.

W-South State of the State of t

# SULFATES, SULFITES AND SULFUR DIOXIDE

# Measurements Research Branch

## Analytical Method

Analyte:

Sulfates, Sulfites and Sulfur Dioxide

Method No.:

PACAM 268

Matrix:

Air

Range:

Sulfates: 0.1-10 mg/ $m_s^3$ 

(200-L air sample)

**S**0<sub>2</sub>:

Sulfites:  $0.1-10 \text{ mg/m}^3$ 0.04-4 ppm

Procedure:

Particulate sulfates

and sulfites collected

Precision:

on filter; SO<sub>2</sub> on

treated filter; analysis by ion chromatography

(Analytical)

Date Issued:

7/2/79

Date Revised:

Classification: E (Proposed)

# 1. Synopsis

A known volume of air is drawn through a filter train consisting of a cellulose ester membrane filter followed by an impregnated cellulose filter containing potassium hydroxide. Particulate matter, including sulfates and sulfites, is collected on the first filter, while sulfur dioxide passes through the first filter and is collected on the second filter.

The filters are extracted with deionized water and the extracts are analyzed by anion-exchange chromatography. The following quantities are obtained:

SO2 concentration: calculated from the sulfite peak on the impregnated cellulose filter chromatogram.

Total sulfates concentration (sulfuric acid plus soluble metal sulfates): from the sulfate peak on the untreated cellulose ester membrane filter chromatogram.

Particulate sulfites concentration: from the sulfite peak on the untreated cellulose ester membrane filter chromatogram.

# 2. Working Range, Sensitivity, and Detection Limit

- 2.1 The working range for a 200-L air sample is 0.1-10 mg  $SO_4^{\pi}$  or  $SO_3^{\pi}/m^3$ , and 0.04-4 ppm  $SO_2$  (0.1-10 mg  $SO_2/m^3$ ). This corresponds to 20-2000 µg of sulfate, sulfite or sulfur dioxide per sample.
- 2.2 The sensitivity at 30  $\mu$ mho full scale is 5  $\mu$ g sulfate, sulfite, or sulfur dioxide per sample per mm chart deflection. The sensitivity may be improved by using scale expansion on the readout and by using a smaller volume than 10 mL to desorb the sample.
- 2.3 The detection limit is approximately 0.5  $\mu$ g  $S0\frac{\pi}{4}$  or  $S0\frac{\pi}{3}$ /mL in the solution injected, corresponding to 5 g sulfate, sulfite, or sulfur dioxide per sample.

#### 3. Interferences

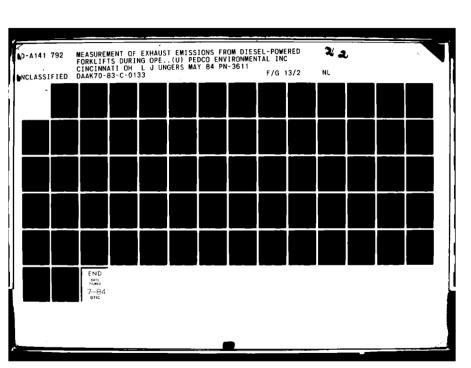
- 3.1 Oxidation of particulate sulfite on the sample filters results in a positive bias for sulfates and a negative bias for particulate sulfites.
- 3.2 Sulfur trioxide gas, if present in dry atmospheres, gives a positive bias in the sulfur dioxide determination.
- 3.3 Nitrate or phosphate ions may give similar retention times to sulfite. Identity of the sulfite peak may be established by spiking the samples with known amounts of sulfite and analyzing with at least two different eluents (e.g., the eluent in Section 7.14 and 0.003 M NaCO3/0.001 M NaHCO3).
- 3.4 Insoluble sulfates collected on the first filter will not be measured unless special care is taken to dissolve them.

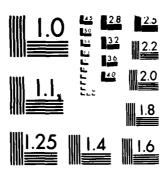
# 4. Precision and Accuracy

- 4.1 The relative standard deviation of the analytical method is 5% or less in the range 50-1000 µg  $S0\frac{\pi}{2}$  or  $S0\frac{\pi}{4}$  per sample, corresponding to 0.25-5 mg/m<sup>3</sup>  $S0_2$ , sulfites, or sulfates.
- 4.2 A major factor affecting accuracy is the tendency of particulate sulfites and absorbed sulfur dioxide to oxidize. Because of this, a negative bias which has not been thoroughly investigated occurs.

## 5. Advantages and Disadvantages

- 5.1 The sampling device uses only filters and involves no liquids.
- 5.2 Oxidation of a significant fraction of the particulate sulfites and sulfur dioxide in the sample is unavoidable.
- 5.3 Because identification is based on retention time, interferences may not be easily identified (see Section 3.3).


No Proposition of the Park


## 6. Apparatus

- 6.1 The apparatus for the collection of personal air samples consists of:
  - 6.1.1 Filter holder, 3-piece cassette, polystyrene, 37-mm diameter.
  - 6.1.2 Shrinkable cellulose band.
  - 6.1.3 Mixed cellulose ester membrane filter, 0.8 micrometer pore size, 37-mm diameter, supported by a cellulose backup pad.
  - 6.1.4 Cellulose filter, Whatman-40 or equivalent, impregnated with potassium hydroxide-glycerine solution, supported by a cellulose backup pad. To prepare the filter, saturate it with filter impregnating solution on a clean glass plate or watch glass and dry at 100°C for 20-30 minutes.
  - 6.1.5 Personal sampling pump whose flow can be calibrated in line with a representative loaded filter holder to an accuracy of +5% at the recommended flow rate.
  - 6.1.6 Thermometer
  - 6.1.7 Manometer
  - 6.1.8 Stopwatch
  - 6.1.9 Screw cap, glass bottles, such as scintillation vials.
  - 6.1.10 Tweezers
- 6.2 Ion-exchange chromatograph, equipped with electrical conductivity detector and recorder or integrator.
- 6.3 10-mL pipette
- 6.4 10-ml plastic syringe with male luer fitting
- 6.5 In-line filter with Luer fitting, 25 mm diam (0.8 µm membrane filter).
- 6.6 Volumetric flask, 100 ml

## 7. Reagents

- All reagents used should be ACS Reagent Grade or better.
- 7.1 Deionized, filtered water. Conductivity-grade deionized water with a specific conductance of 10 µmho/cm or less is needed for preparation of eluents and other solutions which will be used on the ion chromatograph. The water should be filtered through a membrane filter (0.45-0.8 µm pore size) before use to avoid plugging valves on the chromatograph.





MICROCOPY RESOLUTION TEST CHAR1

NATIONAL BUREAU OF STANDARDS 1967 A

- 7.2 Potassium hydroxide, KOH (pellets)
- 7.3 Glycerol
- 7.4 Sodium carbonate, Na<sub>2</sub>CO<sub>3</sub>
- 7.5 Sodium bicarbonate, NaHCO3
- 7.6 Sodium sulfite, Na<sub>2</sub>SO<sub>3</sub>
- 7.7 Sodium sulfate, Na<sub>2</sub>SO<sub>4</sub>
- 7.8 Nitrogen gas
- 7.9 Filter impregnating solution. Dissolve 20 g KOH in about 50 ml deionized water, add 10 ml glycerol and dilute with deionized water to 100 ml.
- 7.10 Sulfite stock standard (1900 ppm SO<sub>3</sub><sup>2</sup>). Add 5 mL glycerol to a 100 mL volumetric flask a dissolve in approximately 75 mL deionized water which has been heated to 100°C and cooled under nitrogen to remove dissolved oxygen. Add 0.1575 g Na<sub>2</sub>SO<sub>3</sub> and dilute to 100 mL with deionized water. This standard should be prepared fresh weekly.
- 7.11 Sulfite working standard (100 ppm  $S0^{\pm}$ ). Pipette 10.0 mL of 1000 ppm sulfite stock standard into a 100 ml  $^3$ volumetric flask and dilute to 100 mL with a solution containing 2% (v/v) glycerol. Prepare fresh daily.
- 7.12 Sulfate stock standard (1000 ppm  $SO_4^{-}$ ). Dissolve 1.4792 g  $Na_2SO_4$  in deionized water and dilute to 1 liter.
- 7.13 Sulfate working standard (100 ppm SO<sub>4</sub>). Dilute 10.0 mL of the sulfate stock standard to 100 mL with deionized water.
- 7.14 Eluent (0.003  $\underline{M}$  CO $\frac{5}{3}$ /0.003  $\underline{M}$  HCO $\frac{5}{3}$ ). Dissolve 1.27 g Na<sub>2</sub>CO<sub>3</sub> and 1.01 g NaHCO<sub>3</sub> in 4 liters of defonized, filtered water.

#### 8. Procedure

- 8.1 Cleaning of Equipment. Glassware, including screw cap bottles, should be washed in detergent and rinsed in dilute (1-5%) nitric acid, followed by thorough rinsing with distilled or deionized water.
- 8.2 Collection and Shipping of Samples
  - 8.2.1 Each personal sampling pump must be calibrated with a representative filter cassette in line to assure accurately known sample volumes.

- 8.2.2 Assemble the filter cassette as follows: First, place a backup pad in place in the rear section of the cassette. On top of this place a treated cellulose filter (Sec. 6.1.4) and then put the center retaining ring of the cassette in place. Mext, put another backup pad on top of the retaining ring, place a mixed cellulose ester membrane filter (Sec. 6.1.3) on top of the backup pad, and put the front section of the cassette in place. A shrinkable band should be used to seal the cassette.
- 8.2.3 Collect the sample at 1.5 liters per minute. The air being sampled should not pass through any hose or tubing before entering the cassette. A sample size of 200 liters is recommended.
- 8.2.4 If significant amounts of sulfuric acid are suspected in the sample, the cellulose ester membrane filter must be transferred to a clean, glass bottle within 4 hours of sampling to avoid low recovery of sulfate. Handle the filter with tweezers to avoid contamination. Reclose the cassette containing the treated cellulose filter.
- 8.2.5 Carefully record the sample identity and all pertinent sampling data. With each batch of up to 10 samples submit appropriate blank filters for analysis.

## 8.3 Analysis of Samples

- 8.3.1 Put the two filters from the cassette into two separate, clean, screw-top glass bottles. Add 10.0 mL eluent (Sec. 7.14) to each bottle and let stand, with occasional vigorous shaking, for 30 minutes.
- 8.3.2 Pour the contents of the bottle into a syringe fitted with an in-line filter and collect the filtrate in a second syringe.
- 8.3.3 Inject the filtered sample onto the chromatograph and record the sample identity and instrumental conditions. Typical operating conditions are:
  - sensitivity: 30 µmho full scale (for 5-100 ppm sulfate and sulfite)
  - eluent: 0.0030 M Na<sub>2</sub>CO<sub>3</sub>, 0.0030 M NaHCO<sub>3</sub>
  - flow rate: 138 ml/hr
  - separator column: 3 mm 1.D. x 500 mm (anion exchanger), preceded by a precolumn
  - suppressor column: 6 mm I.D. x 250 mm (cation exchanger)

A STATE OF THE STA

- So<sup>2</sup> retention time: 6-7.5 min (depending on eluent)
- SO<sub>4</sub> retention time: 9-10.5 min (depending on eluent)
- 8.3.4 Measure and record the peak height or peak area of each sulfite and sulfate peak. If interfering substances (e.g., nitrate or phosphate) are present, establish positive identity of sulfite and sulfate peaks by adding known amounts of standard solutions and by changing eluent concentration for better separation, if necessary.

## 9. Calibration and Standardization

- 9.1 From the 100 ppm working standards, prepare 5, 10, 15, 20, 30, 50, and 80 ppm sulfate and sulfite standards by diluting, respectively, 0.5, 1.0, 1.5, 2.0, 3.0, 5.0, and 8.0 mL to 10 mL with deionized water. These standard solutions should be prepared fresh daily.
- 9.2 With each set of samples analyzed, a complete calibration curve should be constructed, using the standards prepared in 9.1 or additional standards as needed. Plot peak height or peak area vs. concentration for both sulfite and sulfate. A sulfite standard with nominal concentration  $C_n$  (ppm) will give two peaks: a sulfite peak,  $C_n$  and a sulfate peak,  $C_n$  (ppm). The relationship between these is  $C_n = C_n = C_n \times 0.8334$ .

#### 10. Calculations

- 10.1 From the calibration curves obtained in Sec. 9.2, read the concentrations of sulfite and sulfate ions in each sample in ppm. Designate whether the ions originated on the cellulose ester membrane filter or the treated cellulose filter. Thus, four concentrations will be obtained.
  - C<sub>1</sub> = concentration, ppm, of sulfite from cellulose ester membrane filter
  - C<sub>2</sub> = concentration, ppm, of sulfate from cellulose ester
     membrane filter
  - C<sub>3</sub> = concentration, ppm, of sulfite from treated cellulose filter
  - C<sub>4</sub> = concentration, ppm, of sulfate from treated cellulose
     filter

A - March Tolk State A

10.2 Calculate the concentrations in the air sample using the formulae:

Total particulate sulfite 
$$(mg/m^3) = \frac{c_1 \times 10}{v}$$

Total particulate sulfate 
$$(mg/m^3) = \frac{C_2 \times 10}{v}$$

Sulfur dioxide 
$$(mg/r^3) = \frac{(c_3 \times 10 \times 0.08002) + (c_4 \times 10 \times 0.6669)}{v}$$

Sulfur dioxide (ppm) = 0.3817 x sulfur dioxide (mg/m<sup>3</sup>) x 
$$\frac{760 \times T}{298 \times P}$$

where V is the volume (liters) of air sampled.

T is the absolute temperature ( $^{\circ}K = ^{\circ}C + 273$ ) at which the sample was taken.

P is the pressure (mm Hg) at which the sample was taken.

#### 11. References

- 11.1 Mulik, J.D., R. Puckett, D. Williams, and E. Sawicki: Analysis of Nitrate and Sulfate in Ambient Aerosols. Anal. Lett. 9: 653(1976)
- 11.2 Pate, J.B., Lodge, and M.P. Neary: The Use of Impregnated Filters to Collect Traces of Gases in the Atmosphere. Anal. Chim. Acta 28: 341 (1963)

Peter M. Eller, Ph.D. Michael Kraus Inorganic Methods Development Section

# TOTAL PARTICULATE AROMATIC HYDROCARBONS (TDAH) IN AIR Physical and Chemical Analysis Branch **Analytical Method**

Analyte:

**TpAH** 

Method No.:

**P&CAM 206** 

Matrix:

Air

Range:

Lower limit, 3 nanograms

benzo(a)pyrene

Procedure:

Sampling with glass fiber filter, extract ultrasonically, enPrecision:

± 1.33% RSD (Analytical)

rich and measure with HPLC

Date Issued:

1/1/75

Classification:

E (Proposed)

Date Revised:

## 1. Principle of the Method

Airborne particles collected from polluted atm spheres on glass fiber filters are extracted ultrasonically in the presence of silica powder (11.1-3). The TpAI- - the filtered extract are separated by high speed liquid chromatography on a column of Corasii ii with a non-polar solvent, and the absorbance is measured by a UV detector at 254 nm. Compounds responding to the detector are shown in Tables 1, 2, 3, and 4. The extract is suitable also for the analysis of the aliphatic hydrocarbons (11.4).

#### 2. Range and Sensitivity

- 2.1 Minimum reproducible level of standard benzo(a)pyrene at 254 nm is approximately 3 nanograms.
- 2.2 The minimum detectable TpAH (in terms of benzo(a)pyrene) for particulates collected on one glass fiber filter of approximately 452 cm<sup>2</sup> is approximately 5 micrograms, or 3.3 nanograms m<sup>3</sup> of air if 1500 m<sup>3</sup> of air are sampled in the ambient atmosphere.
- 2.3 The upper range of TpAH concentrations can be increased by dilution of the extract and 'or analyzing smaller samples. Sensitivity for low concentrations can be increased by injecting larger samples into the chromatograph. Thus, very high levels of TpAH can be measured.

#### 3. Interferences

3.1 Any compound which is not retained on the silica column and absorbs light at 254 nm is measured in this procedure.

Fluorene and some of its analogues and derivatives listed in Table 2, and polychloro derivatives of some di- and tricyclic hydrocarbons in Table 3 are examples of such compounds.

- 3.2 Amino, carbonyl, hydroxy and nitro compounds elute after the PAH, so do not interfere. See Table 2.
- 3.3 Carbazoles and aldehydes are either retained or have retention times larger than the PAH, except N-alkyl substituted derivatives, which elute with the PAH. See Table 4.

- 3.4 Oxygenated compounds, some phenols and aza and imino-heterocyclics (except some members of the indole series) are retained. Examples are benzoquinone, o-ethylphenol, acridine, and quinoline.
- 3.5 Most interfering compounds have quite low peak area/µg values, which decreases their significance, as shown in Tables 2, 3, and 4.

TABLE 1
Detice of PAH

|                                 | % Einted     |              |
|---------------------------------|--------------|--------------|
|                                 | Through      | PA'/M        |
| Compound                        | Colomo       | × 10-        |
| Mono-, dicyclics                |              |              |
| Benzene                         | <b>9</b> 9   | 0.4          |
| N-Hexylbenzene                  | 1 <b>0</b> 0 | 0.5          |
| N-Heptylbenzene                 | 100          | 0.7          |
| Naphthalene                     | 101          | 0.7          |
| Azulene                         | <b>9</b> 3   | 3.0          |
| Tricyclics                      |              |              |
| Anthracene                      | <b>10</b> 0  | <b>36</b> .0 |
| 9-Methylanthracene              | 99           | 15.0         |
| Xanthene                        | 102          | 1.3          |
| Phenoxathiin                    | 92           | 0.2          |
| Phenanthrene                    | 100          | 10.0         |
| Tetracyclics                    |              | 2010         |
| Naphthacene                     | <b>9</b> 5   | 4.7          |
| Chrysene                        | 105          | 4.5          |
| Pyrene                          | 96           | 3.6          |
| 4-Methylpyrene                  | 100          | 1.7          |
| 1,3-Dimethylpyrene              | 96           | 0.9          |
| Triphenylene                    | 100          | 9.0          |
| Benz(a)anthracene               | 96           | 4.3          |
| 7,12-Dimethylbenz(a)anthracene  | 102          | 3.3          |
| Pentacyclics                    |              | 0.0          |
| Dibenz(a,h)anthracene           | 96           | 0.6          |
| Benzo(a)pyrene                  | 100          | 5.3          |
| Benzo(e)pyrene                  | 92           | 2.2          |
| Picene                          | 99           | 5.0          |
| Perylene                        | 96           | 5.8          |
| Hexacyclics                     |              | 2.0          |
| Benzo(ghi)perylene              | 99           | 1.8          |
| Anthanthrene                    | 93           | 2.6          |
| Dibenzo(fg, op)naphthacene      | 93           | 0.6          |
| Coronene                        | 91           | 0.5          |
| Dibenzo(g.p)chrysene            | 96           | 1.0          |
| Naphtho(2,1,8-qra) naphthaceneh | 100          | 0.7          |

<sup>\*</sup>Retention time is approximately 2 minutes. \*Or naphtho(2,3-a)pyrene. PA = Peak Area.

## 4. Precision and Accuracy

- 4.1 Homogeneous glass fiber samples containing air particulates were analyzed by Soxhlet and ultrasonic extraction. See Table 5. The relative standard deviation for 6 ultrasonic extracts was ± 1.33% and for 4 Soxhlet extracts ± 26.1%. The ratio of ultrasonic to Soxhlet recovery was 1.14.
- 4.2 Recovery of PAH added to glass fiber filter blanks and extracted ultrasonically was 95% for anthracene; 97.5% for phenanthrene; and 98.2% for benzo(a)pyrene (Table 6).

# 5. Advantages and Disadvantages of the Method

- 5.1 The extraction is done at room temperature. Complete extraction of the TpAH is assured by the fine shredding of the glass fibers and the breaking up of clumps of particulates.
- 5.2 Only a relatively small sample of air particulates is required. Complete analysis time is well under an hour, most of which is waiting time.
- 5.3 Most of the polar constituents are removed by adsorption in the homogenizing vessel. The remainder are removed by the fast simple chromatographic analysis.
- 5.4 The method can accommodate a wide range of hydrocarbon pollution concentrations, since sample extract volumes ranging from 0.1 to 2 ml can be chromatographed.
- 5.5 Time and work are saved by not weighing the particulates or soluble organics.

TABLE 2
Elution of Fluorene, Analogues and Derivatives

| Compound                      | t,Min.             | % Elected<br>t,Min. Through Column PA/µ8 × 10° |     |  |
|-------------------------------|--------------------|------------------------------------------------|-----|--|
| Fluorene                      | 2.0                | 100                                            | 2.9 |  |
| Dibenzothiophene              | 2.0                | 96                                             | 1.8 |  |
| Dibenzofuran                  | 2.0                | 98                                             | 0.3 |  |
| Fluoranthene                  | 2.0                | 95                                             | 2.5 |  |
| Benzo(k)fluoranthene          | 1.8                | 97                                             | 1.4 |  |
| Benzo(b)fluoranthene          | 1.0                | 99                                             | 1.6 |  |
| 2-Ethylfluorene               | 1.0                | 95                                             | 1.6 |  |
| 11H-Benzo(b)fluorene          | 1.0                | 110                                            | 5.6 |  |
| 2-Nitrofluorene               | 4.8                | 104                                            | 0.2 |  |
| 2,5-Dinitrofluorene           | 7.0                | 71                                             | 0.3 |  |
| 9-Fluorenol                   | 8.5                | 14                                             | 0.2 |  |
| 3,6-Dinitrodibenzoselenophene | 18.2               | 38                                             | 0.2 |  |
| 3-Aminofluorene               | 18.2               | 68                                             | 0.4 |  |
| 4-Fluorenecarboxylic acid     |                    | Retained on colu                               | ımn |  |
| 2-Hydroxyfluorene             | Retained on column |                                                |     |  |
| 2-Nitro-7-hydroxyfluorene     | Retained on column |                                                |     |  |
| Fluorenone                    | Retained on column |                                                |     |  |

TABLE 3

Elution of Polychloro Derivatives of Di- and Tricyclic Hydrocarbons\*

| Compound 1                                              | % Eluted<br>Parough Column | PA/µ\$ × 10 <sup>-4</sup> |
|---------------------------------------------------------|----------------------------|---------------------------|
| 1,1-Dichloro-2,2-bis(p-chlorophenyl)ethane (p,p'DDD)    | 94                         | 0.02                      |
| 1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE)      | 97                         | 0.50                      |
| 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (p,p'DD'  | T) 85                      | 0.02                      |
| Aroclor 1260 (chlorinated biphenyls, 60% chlorine)      | 100                        | 0.13                      |
| Aroclor 5432 (chlorinated triphenyls, 32% chlorine)     | 104                        | 0.61                      |
| Halowax 1099 (mixture of tri- and tetrachloro naphthale | enes,                      |                           |
| 52% chlorine)                                           | 101                        | 0.25                      |
| 1,2,3,4,5,6,7,8-Octachloronaphthalene                   | 97                         | 0.64                      |
| 2,3,4,5,6,2',3',4',5',6'-Decachlorobiphenyl             | 95                         | 0.19                      |
| 1,2,3,4,5,6,7,8-Octachlorodibenzofuran                  | 93                         | 0.33                      |
| 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin              | 98                         | 0.85                      |
| Tetradecachioro-p-terphenyi                             | 95                         | 0.22                      |

<sup>&</sup>quot;Retention times from 1 to 2 min.

- 5.6 A disadvantage is that a blank correction must be made for the fiber glass filter. Also, care must be taken to avoid evaporation of the extract to dryness.
- 5.7 A further disadvantage is that the ultrasonic extraction must be done in a sonabox to reduce the unacceptably high noise level.

# 6. Apparatus

- 6.1 Sonifier Cell Disruptor, 20 kHz power ultrasonic generator capable of dialing 70 watts accurately, with a 1.27-cm (½-inch) born disruptor and Sonabox.
- 6.2 Liquid Chromatograph, with stainless steel column 2.6 × 300 mm, UV Detector with 254 nm filter and loop injector with a capacity ranging from 0.1 to 2 ml.
- 6.3 Strip Chart Recorder with Disc Integrator.
- 6.4 An approved and calibrated personal sampling pump for collection of particulate matter.

  Any vacuum pump whose flow can be determined accurately to within 1 lpm or less.

TABLE 4
Elution of Some Indoles, Carbazoles and Aromatic Aldehydes

| Compound                                   | t <sub>e</sub> Min. | % Eluted<br>Through Column     | PA'/µ2<br>× 10 |
|--------------------------------------------|---------------------|--------------------------------|----------------|
| Indole                                     | 5.3                 | 82                             | 1.1            |
| Carbazole                                  | 11.8                | 67                             | 0.7            |
| 4-H-Benzo(def)carbazole                    | 8.0                 | <b>9</b> 8                     | 2.0            |
| 11-H-Benzo(a)carbazole                     | 14.5                | 55                             | 3.0            |
| 7-H-Dibenzo(c,g)carbazole                  | 18.0                | 92                             | 2.1            |
| N-Phenykarbazole                           | 2.3                 | 74                             | 1.8            |
| N-Ethylcarbazole                           | 2.5                 | 98                             | 0.5            |
| 5-Methyl-5, 10-dihydroindeno(1,2-b) indole |                     | 103                            | 1.9            |
| 2,3-Dimethylindole                         | 5.3                 | 90                             | 5.5            |
| 2-Methylcarbazole                          | 6.8                 | 100                            | 0.8            |
| 2-Hydroxycarbazole                         | <b>3</b> .0         | Retained on column Retained on |                |
| N-Ethyl-3-aminocarbazole                   |                     | column                         |                |
| Benzaldehyde                               | 12.8                | 56                             | 1.1            |
| 2-Naphthaldehyde                           | 8.2                 | 78                             | 0.3            |

Peak Area

TABLE 5

Comparison of Ultrasonic and Soxblet Extractions

| Sample No.        | Ultra              | poetr    | Sozblet |          |  |
|-------------------|--------------------|----------|---------|----------|--|
|                   | PA/µE              | % Eluted | PA/µE   | % Eluted |  |
| 1                 | 0.575              | 51       | 0.449   | 28       |  |
| 2                 | 0.562              | 53       | 0.509   | _        |  |
| 3                 | 0.567              | 50       | 0.500   | -        |  |
| 4                 | 0.579              | 48       | 0.545   | 31       |  |
| 5                 | 0.560              | 44       | _       | _        |  |
| 6                 | 0.573              | 44       | _       |          |  |
| Average           | 0.569              | 49       | 0.509   | 30       |  |
| Rel. Std.<br>Dev. | ±1.33%             |          | ±26.1%  |          |  |
| Ultrasonic/So:    | xhiet Recovery = 1 | 1.14     |         |          |  |

Refers to % of TpAH in the extracted meterial.

TABLE 6
Recovery of Added PAH

| Compound       | Sample, µg | Southed<br>Filter + Std. | Standard<br>Solution | % Recevery       |
|----------------|------------|--------------------------|----------------------|------------------|
| Anthracene     | 0.035      | 1005                     | 1055                 | 95.0             |
| Phenanthrene   | 0.147      | 1155                     | 1185                 | <del>9</del> 7.5 |
| Benzo(a)pyrene | 0.355      | 1846                     | 1880                 | 98.2             |

- 6.5 Column Bypass.
- 6.6 Fisher Filtrator and medium sintered glass filter.
- 6.7 U.S. Standard Sieve Series No. 120, with 125-micron openings.

## 7. Reagents

- 7.1 Cyclohexane, ACS spectroanalyzed, distilled once from glass.
- 7.2 Polynuclear aromatic hydrocarbons.
- 7.3 Glass powder, spherical, non-wettable, 38-53 microns in diameter.
- 7.4 Corașil II.

#### 8. Frocedure

#### 8.1 Extraction

- 8.1.1 The 1.27-cm horn of the sonifier cell disruptor is supported in a sonabox to reduce noise. The sonifying vessel is a beaker 3.8 cm I.D. × 10 cm tall. The end of the horn is set about 0.6 cm above the bottom of the beaker to insure adequate "stirring" of the mixture and equal exposure to areas of intense cavitation. Approximately 16 square cm of the exposed glass fiber filter and blank are cut into roughly 1.3-cm squares to facilitate shredding. The sonifying vessel is surrounded by an ice water bath up to the level of the solvent mixture.
- 8.1.2 Homogeneous replicate samples of approximately 16 square cm of exposed and blank glass fiber filters are prepared and adjusted to exactly 100 mg. This weight necessarily includes both the particulates and the glass fiber. These samples were used to maximize parameters and for comparison of ultrasonic and Soxhlet extractions, shown in Table 5.
- 8.1.3 Samples for routine analysis are not weighed. Only the areas of the sample (16 square cm) and the whole filter, the volume of air sampled and the volume of extract injected need to be determined. Sample at rate of at least 2 lpm for 1 hr or more.
- 8.1.4 Extraction Procedure. The sample, 60 ml cyclohexane, and 5 ml silica powder are placed in the sonifying vessel, and sonified for 8 min at 70 watts. The supernatant is decanted into the sintered glass filter supported on a Fisher Filtrator. Cyclohexane is added to the sonifying vessel to the level of the original mixture (usually about 50 ml). Sonification is carried on for an additional 4 minutes. The contents are filtered and combined with the first fraction, and rinsed with 50 ml cyclohexane. The filtrates and rinsings are collected in an Erlenmeyer flask and evaporated to about 5 ml, transferred quantitatively to a 10-ml volumetric flask and made to the mark.

- 8.1.5 Sample and blank filters (8.1.2) are extracted by Soxhlet with 80 ml cyclohexane for 6-8 hr, for comparison with the ultrasonic extraction. See Table 5. After filtering, the extracts are evaporated in the same manner as the ultrasonic extracts.
- 8.1.6 The glass fiber filters used for air sampling should be as free as possible of soluble compounds which absorb at 254 nm. It may be necessary to flash fire or extract them and care should be taken to avoid contaminating them.

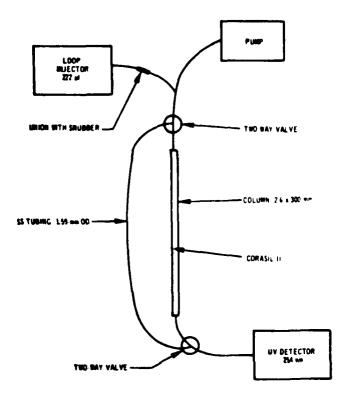



FIGURE 1. Schematic of Chromatographic System

The state of the same of

8.2.2 To test the performance of the column, the percent of PAH which elutes is calculated from the peak areas through the column and the column bypass. Typical chromatograms from column and tubing are shown in Figure 2. Recovery of benzo(ghi)perylene was 99%. The percent of other hydrocarbons which eluted through the column ranged from 91 to 105, Table 1.

#### 8.3 Analysis Procedure

- 8.3.1 An appropriate volume of extract is injected through the loop injector. A flow rate of 1.6 ml/min gives a pressure drop of less than 800 PSI. The peak area is measured with a disk integrator, driven by 0 to 10 servo strip chart recorder with a 0.5 in/min chart speed. The PAH elute in 3 to 5 min. Benzo(a)pyrene is used as the standard. Polar compounds are retained on the column. Samples can be chromatographed every 5 to 10 minutes.
- 8.3.2 The column bypass is also used to determine the percent of PAH in the organic reterial of the extract. Chromatograms of sample extracts made on the column is column bypass are shown in Figure 3. On the basis of absorbance measurements 254 nm, approximately 50% of the organic material in the unchromatographed tract is PAH. This procedure is not necessary for routine analyses, but is helpfurely elucidating the analytical situation in research samples.

#### 8.4 Effects of Storage

- 8.4.1 Urban particulates on glass fiber filters stored in the dark in an envelope for one year lost 32% of their benzo(a)pyrene. Losses of some other PAH ranged from 1-88% (11.5).
- 8.4.2 Benzene-soluble extracts evaporated to dryness and stored in closed bottles in a refrigerator were stable (in terms of benzo(a)pyrene concentrations) for 4 years (11.6).
- 8.4.3 The ultrasonic extract is stable in the dark at room temperature for several days, longer in the refrigerator. However, losses usually occur after about two weeks.

#### 9. Calibration and Standards

The benzo(a)pyrene (BaP) standard is made in cyclohexane and is chromatographed when the samples are run, and repeated whenever a parameter such as solvent lot is changed. Both standard and samples are run at concentrations which do not overload the detector and give reproducible results when diluted. For example, 0.4  $\mu$ g BaP gave a peak area of about 2000 and fulfilled the above criteria.

The standard is expressed in terms of peak area per microgram  $(PA/\mu g)$ . The unit of measurement for the samples is corrected peak area per cubic meter of air  $(PA/m^3)$ . The BaP equivalent of the TpAH is calculated from these data (10.2). The standard is kept in the dark and is stable for more than 30 days when refrigerated nights and weekends.

#### 10. Calculations

10.1 The peak area of the TpAH in a cubic meter of air is given by the equation

$$PA/m^3 = \frac{PA \times A \times B}{V \times a \times b}$$

where:

PA = Peak area, corrected for the blank

V = Volume of air sampled in m<sup>3</sup>, corrected to 25°C and 760 Torr

A = Area of whole glass fiber filter in cm<sup>2</sup>

- B = Volume of extract in ml
- a = Area of glass fiber filter sample in cm<sup>2</sup>
- b = Volume of extract injected in ml
- 10.2 The concentration of the TpAH may be expressed in terms of their equivalent in benzo(a)-pyrene.

$$TpAH(\mu g)/m^2$$
 air =  $\frac{PA/m^2}{PA/\mu g} \frac{air}{benzo(a)pyrene} (See Table 1)$ 

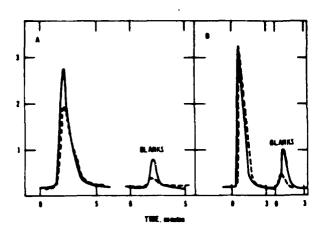



FIGURE 3. Chromatograms of ultrasonic and Soxhlet extracts of composited sample No. 1, Table 6 and blanks, through the column (A) and through the column bypass (B). Stationary phase, Corasil II; eluent, cyclohexane; flow rate, 1.6 ml/min. Solid lines are ultrasonic extracts; broken lines are Soxhlet extracts. Extracts were diluted x 3.3 for column bypass.

TABLE 7
Analysis of Particulate Samples

| Description | Corrected<br>Peak Area | m* Air<br>Sampled | PA/=°<br>Air | TpAH'<br>(mg)m²<br>Alr |
|-------------|------------------------|-------------------|--------------|------------------------|
| Urban I     | 1200                   | 1500              | 1120         | 0.211                  |
| Urban II    | 620                    | 1500              | 580          | 0.109                  |
| Urban III   | 545                    | 1500              | 509          | 0.096                  |
| Mt. Storm   | 0                      | 1673              | 0            | 0.000                  |

<sup>&</sup>quot;See Calculations-Section 10.1. "See Calculations-Section 10.2.

#### 11. References

- 11.1 Brown, B. and J. E. Goodman, High Intensity Ultrasonics, Industrial Applications, Chapter 2, pp. 30-55, Van Nostrand Company, Princeton, New Jersey, 1965.
- 11.2 Chatot, G., M. Castegnaro, J. L. Roche, and R. Fontanges, Anal Chim Acta 53:259, 1971.
- 11.3 Chatot, G., R. Dangy-Caye, and R. Fontanges, J. Chromatogr 72:202, 1972.
- 11.4 Wittgenstein, E. and E. Sawicki, Int J Environ Anal Chem 2:11, 1972.
- 11.5 Commins, B. T., in Analysis of Carcinogenic Air Pollutants, E. Sawicki and K. Cassel, Jr., Eds., National Cancer Institute Monograph No. 9, p. 225, 1962.
- 11.6 Sawicki, E., R. C. Corey, A. E. Dooley, J. B. Gisclard, J. L. Monkman, R. E. Neligan, and L. A. Ripperton, Health Lab Sci 7:56, 1970.

APPENDIX B

CONTINUOUS AIR MONITORING DATA

#### NOTES ON CONTINUOUS AIR MONITORING DATA

#### FIELD DATA REDUCTION

During the testing, the Apple computer took about 45 readings per minute from each of the eight instruments ( $SO_2$ ,  $CO_2$ ,  $CO_2$ , THC,  $NO_X$ , and two air channels). Approximately 5 million individual readings were taken during the period from November 29 through December 15, 1983:

- c 2 days of background data
- ° 9 forklift tests
- 6 warehousing tests
- ° 1 stationary forklift test
  - 9 overnight periods following tests

The sampling covered approximately 110 hours of tests and 130 hours of back-ground and overnight readings.

At the end of each minute of sampling, an arithmetic average was calculated of the readings for each channel. At the end of each sampling period (5 or 15 minutes), these averages were written as a subfile onto the data disk.

A single sequential text file was created for each hour's data at each sampling location. Therefore, a single-hour file might contain as many as 12 individual sampling period subfiles (in the case of a 5-minute cycle and only one location) or as few as 1 sampling period subfile (in the case of a 15-minute cycle with four locations). Each subfile begins with the first minute of the sampling period (e.g., 5, 10, 15, etc.). This is followed by an 8 x SP matrix containing the 1-minute averages (where SP is the length of the sampling period). A 15-minute sampling period therefore contains 120 entries after the starting minute figure. An entry of -999 was used whenever an instrument was off line.

#### CALCULATION OF AVERAGE READINGS

The field sampling sequence operated on either a 5-minute cycle (during tests) or a 15-minute cycle (during overnight runs). At the end of each

cycle, the sampling location was switched to the next location in the sequence. Although individual 1-minute readings were stored on the data disks to simplify the data analysis, it was desirable to calculate averages for the entire sampling period of each instrument. Because of the slow response time of some instruments, the first few minutes of data recorded after a switch in location could not always be considered valid. The following 1-minute readings were therefore averaged to come up with the overall average for the two types of sampling periods:

|                 | Minutes a      | averaged        |
|-----------------|----------------|-----------------|
| <u>Channel</u>  | 5-minute cycle | 15-minute cycle |
| so <sub>2</sub> | 4-5            | 4-15            |
| co              | 2-5            | 2-15            |
| CO <sub>2</sub> | 2-5            | 2-15            |
| THC             | 2-5            | 2-15            |
| NO              | 3-5            | 3-15            |
| NO <sub>x</sub> | 3-5            | 3-15            |
| Air 1           | 1-5            | 1-15            |
| Air 2           | 1-5            | 1-15            |

#### ZERO-DRIFT CORRECTIONS

During operation, continuous monitors experience a slight drift in their zero response. This drift is detected from the output of each instrument's backup strip-chart recorder. The zero drift experienced during the tests was negligable (less than 5 percent of the average reading) for all instruments except the one used to detect sulfur dioxide. The sulfur dioxide data presented in this Appendix represent the raw uncorrected data. The information presented in the body of text (i.e., the tabular or graphic results) has been corrected for zero drift.

#### DATA TABLE DESCRIPTION

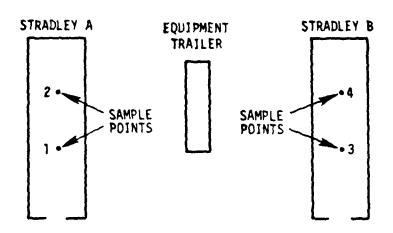

The continuous monitoring data are presented for each vehicle test (by sampling location) for sulfur dioxide, carbon monoxide, carbon dioxide, total hydrocarbons, nitric oxide, and oxides of nitrogen. The recorded air velocities detected at each ventilation duct are also presented.

Figure B-1 is useful for comparison of the results in the appendix tables with summaries in the body of the text. The schedule of the test operations is presented in Table B-1.

TABLE B-1. SCHEDULE OF TEST OPERATIONS

| Test Date | 2   |    | Operation/Truck                                                                                 | Magazine                |
|-----------|-----|----|-------------------------------------------------------------------------------------------------|-------------------------|
| 11/29/83  | Day | 1  | Unload with Truck No. 1 (Still/Deutz F3L912W)<br>Load with Truck No. 3 (Baker/Deutz F3L912W)    | A<br>B                  |
| 11/30/83  | Day | 2  | Unload with Truck No. 3<br>Load with Truck No. 1                                                | B<br>A                  |
| 12/1/83   | Day | 3  | Unload with Truck No. 1<br>Load with Truck No. 3                                                | Ь<br>Б                  |
| 12/2/83   | Day | 4  | Unload with Truck No. 3<br>Load with Truck No. 1                                                | B<br>A                  |
| 12/5/83   | Day | 5  | Unload with Truck No. 1<br>Load with Truck No. 3 (Using high sulfur fuel                        | А<br>) В                |
| 12/6/83   | Day | 6  | Unload with Truck No. 2 (Hyster/Perkins 4.2032)<br>Load with Truck No. 4 (Hyster/Perkins 4.154) | B<br>A                  |
| 12/7/83   | Day | 7  | Unload with Truck No. 2<br>Load with Truck No. 4                                                | A<br>B                  |
| 12/8/83   | Day | 8  | Unload with Truck No. 2<br>Load with Truck No. 4 (Using high sulfur fuel                        | ) B                     |
| 12/9/83   | Day | 9  | Unload with Truck No. 3 (Using high sulfur fuel Load with Truck No. 1                           | ) A<br>B                |
| 12/13/83  | Day | 10 | Warehousing with Truck No. 1                                                                    | hrs 4 hrs<br>B B<br>A A |
| 12/14/83  | Day | 11 | Warehousing with Truck No. 1                                                                    | hrs 4 hrs<br>B A<br>A B |
| 12/15/83  | Day | 12 | Warehousing with Truck No. 1                                                                    | hrs 3 hrs<br>A B<br>B A |

NOTE: The primary diesel fuel used is Phillips D-2 Diesel Control Fuel Lot C-929 (.4% sulfur). The high sulfur diesel fuel used is a referee grade diesel fuel conforming to MIL-F-46162B (1.02% sulfur). Warehousing tests were conducted with each magazine half full of storage. The trucks moved the load continuously in the front half of the magazine.



| DESCRIPTION                           | SAMPLING<br>LOCATIONS                |
|---------------------------------------|--------------------------------------|
| FORWARD SAMPLING POINT IN MAGAZINE A  | 1                                    |
| REAR SAMPLING POINT IN MAGAZINE A     | 2                                    |
| FOREWARD SAMPLING POINT IN MAGAZINE B | 3                                    |
| REAR SAMPLING POINT IN MAGAZINE B     | 4                                    |
| VENTILATION DUCT IN MAGAZINE A        | AIR 1 (IN LINEAR<br>FEET PER MINUTE) |
| VENTILATION DUCT IN MAGAZINE B        | AIR 2 (IN LINEAR<br>FEET PER MINUTE) |

Figure B-1 Location of sampling points, magazines, and equipment trailer.

Location: ONE

Test Description: TEST ONE Date: NOVEMBER 29, 1983

|              | Elapsed | 802   | CO    | COZ    | THC   | NO    | NOI   | AIRI       | AIRZ  |
|--------------|---------|-------|-------|--------|-------|-------|-------|------------|-------|
| Time         | Time    | (PPB) | (PPH) | (PPH)  | (PPH) | (PPB) | (PPB) |            |       |
| 0:10         | 20      | 23    | 2 4   | 559.9  | 5.8   | 15    | 10    | <b>852</b> | 682   |
| 9.25         | 35      | 5 1   | 1.5   | 862 7  | • . • | 311   | 600   | 1027       | 621   |
| <b>8</b> :45 | 5 5     | 31    | 3.3   | 702.7  | 5.3   | 313   | 353   | 1062       | 684   |
| 0.05         | 75      | 26    | 2.2   | 656.0  | 7.3   | 5 9   | 60    | 1471       | 741   |
| 0 25         | 9 5     | 2 3   | 2 3   | 732.4  | 6 . 8 |       | •     | 1760       | 924   |
| 0 45         | 115     | 3 3   | 2 6   | 652.1  | 5.7   | 238   | 278   | 1242       | 796   |
| 1.65         | 135     | 35    | 2 2   | 689 9  | 6 7   | 315   | 342   | 1293       | 843   |
| 1.25         | 155     | 3 8   | 2.2   | 723 4  | 5.2   | 154   | 201   | 1302       | 9 2 6 |
| 1 45         | 175     | 56    | 2 5   | 841.5  | 7.2   | 439   | 515   | 1280       | 760   |
| 2:05         | 195     | 6 3   | 1 7   | 723 2  | 7 7   | 600   | 682   | 1099       | 611   |
| 2.25         | 215     | 8 3   | 17    | 789.7  | 7.1   | 505   | 561   | 1172       | 706   |
| 2.45         | 235     | 122   | 2.3   | 866 4  | 5.1   | 714   | 776   | 1143       | 750   |
| 3 05         | 255     | 309   | 2 2   | 878.5  | 8 7   | 1105  | 1403  | 1058       | 615   |
| 3.25         | 275     | 291   | 1 9   | 1174 6 | 7.2   | 1316  | 1266  | 1075       | 796   |
| 3 45         | 295     | 253   | 3 3   | 1241 7 | 6.5   | 1042  | 1270  | 1036       | 653   |
| 4 05         | 315     | 149   | 3.0   | 1206.5 | 5 2   | 690   | 765   | 1053       | 819   |
| 4:25         | 335     | 432   | 2 6   | 1331 4 | 5.7   | 1446  | 1498  | 1115       | 73    |
| 4 45         | 355     | 448   | 2 5   | 1194 4 | 7.8   | 1553  | 1603  | 1279       | 693   |
| 5 05         | 375     | 287   | 2.6   | 1164.1 | 6.9   | 1041  | 1173  | 1400       | 723   |
| 5.25         | 395     | 563   | 1.9   | 1490.4 | 7.3   | 1797  | 1085  | 1264       | 756   |
| 5 45         | 415     | 5 2   | 2 6   | 1122.4 | 6.1   | 24    | 41    | 1140       | 700   |
| 6 05         | 435     | 208   | 3 0   | 1349.5 | 6.0   | 828   | 917   | 1108       | 5 5 7 |
| 6 25         | 455     | 431   | 2 6   | 1329.5 | 8 0   | 1511  | 1743  | 956        | 597   |
| 6 45         | 475     | 426   | 3.4   | 1365.5 | 8.1   | 1307  | 1594  | 1060       | 69    |
| 7.05         | 495     | 353   | 2 8   | 1391.6 | 5 5   | 1214  | 1325  | 1266       | 79    |
| 7 25         | 515     | 203   | 3.1   | 1047 6 | 6.5   | 802   | 1036  | 1248       | 01:   |
| 7.45         | 535     | 211   | 3.3   | 1123.5 | 6.0   | 764   | 816   | 1142       | 774   |
| 6 05         | 555     | 181   | 3.7   | 1147.0 | 7.0   | 799   | 803   | 1373       | 860   |
| 8:25         | 575     | 127   | 4 4   | 1221.3 | 6 3   | 512   | 567   | 1290       | 105   |
| 8:45         | 595     | ***   | 1111  |        |       | ****  | ***   | 877        | 105   |

Location: TWO
Test Description: TEST ONE
Bate: NOVEMBER 28, 1983

| 1      | Elapsed | <b>S</b> O2 | CO    | COZ    | THC                 | NO    | MOI   | AIRI | AIR |
|--------|---------|-------------|-------|--------|---------------------|-------|-------|------|-----|
| Time   | Time    | (PPB)       | (PPM) | (PPH)  | (PPH)               | (PPB) | (PPB) |      |     |
| 9.30   | 40      | 2.6         | 3.1   | 678.6  | 5.5                 | 235   | 243   | 1029 | 810 |
| 9.50   | 60      | 29          | 3.3   | 721.4  | <b>5</b> . <b>5</b> | 348   | 371   | 1107 | 76  |
| 0:10   | 8.0     | 21          | 2 5   | 670.0  | 5 . 8               | 25    | 30    | 1550 | 85. |
| 0:30   | 100     | 18          | 2.4   | 703.1  | 7.4                 | • •   | 79    | 1492 |     |
| 0.50   | 120     | 25          | 2.3   | 814.6  | 5.3                 | 234   | 263   | 1159 | 76  |
| 1:10   | 140     | 29          | 2.0   | 812.2  | 6 . 3               | 442   | 471   | 1226 | 76  |
| 1:30   | 160     | 26          | 2.3   | 750.5  | 6.0                 | 206   | 229   | 1158 | 8 2 |
| 1.50   | 180     | 30          | 2 2   | 817.8  | 7.6                 | 357   | 396   | 1060 | 61  |
| 2:10   | 200     | 40          | 2 5   | 1038.6 | 10.8                | 737   | .06   | 1234 | 6.6 |
| 2 30   | 220     | 3 8         | 2.6   | 899.5  | 5 . 8               | 500   | 542   | 1075 | 69  |
| 2.50   | 240     | 5 2         | 2 5   | 860.3  | 6.1                 | 630   | 670   | 1318 | 75  |
| 3:10   | 260     | 6 5         | 2.4   | 877.0  | 8.1                 | 700   | 750   | 1243 | 79  |
| 3 30   | 280     | 67          | 2 2   | 1054.1 | 6.7                 | 554   | 603   | 1261 | 8 0 |
| 3:50   | 300     | 72          | 3.0   | 1167 4 | 6.3                 | 598   | 664   | 1127 | 8 6 |
| 4 10   | 320     | 70          | 3 . 2 | 1267.6 | 6.4                 | 506   | 576   | 1529 | 87  |
| 4 30   | 340     | 116         | 3.0   | 1076.4 | 5.9                 | . 8 5 | 950   | 1186 | 74  |
| 4:50   | 360     | 149         | 3 1   | 1009.6 | 7.4                 | 968   | 1055  | 1252 | 6 5 |
| 5.10   | 360     | 185         | 3.1   | 1053.8 | 6.5                 | ##5   |       | 1109 | 72  |
| 5 . 30 | 400     | 169         | 2.9   | 946.9  | 6.6                 | 801   | 933   | 1228 | 75  |
| 5 5 0  | 420     | 128         | 4 . 4 | 1072.5 | 8.3                 | 534   | 768   | 1150 | 6.4 |
| 6.10   | 440     | 342         | 3.0   | 1282.7 | <b>0</b> . 2        | 1241  | 1682  | 1145 | 72  |
| 6.30   | 460     | 5 0 Z       | 2.8   | 1360.2 | 6.3                 | 1515  | 1698  | 1003 | 8 6 |
| 6 50   | 480     | 455         | 3.2   | 1364.5 | 5.5                 | 1500  | 1519  | 1116 | 6 9 |
| 7 10   | 500     | 426         | 3.1   | 1198.1 | 7.2                 | 1430  | 1582  | 1152 | 78  |
| 7 30   | 520     | 248         | 3 1   | 1155.6 | 7.8                 | 1059  | 1253  | 1266 | 9 5 |
| 7.50   | 540     | 251         | 2.0   | 1166.5 | 6.4                 | 951   | 164   | 1154 | 7 2 |
| 8 10   | 560     | 245         | 4.1   | 1104.1 | 7.3                 | 948   | 802   | 1294 | 102 |
| 8.30   | 560     | 97          | 3.3   | 1087.5 | 6.6                 | 306   | 360   | 1200 | 103 |

Location THREE

Test Description: TEST ONE Bate: NOVENBER 29, 1883

| Time :  | Elapsed<br>Time  | 802<br>(PPB) | CO<br>(PPM) | CO2<br>(PPM) | THC<br>(PPH) | NO<br>(PPB) | NOI<br>(PPB) | AIRI | AIRZ |
|---------|------------------|--------------|-------------|--------------|--------------|-------------|--------------|------|------|
|         |                  |              |             |              |              |             |              |      |      |
| 8.00    | 10               | 24           | 2 6         | 611.4        | 5 . 9        | 5           | 3            | 1189 | 734  |
| 9:20    | 30               | • •          | 2.0         | 716.6        | 5.1          | 1623        | 1634         | 1069 | 750  |
| 9 33    | 4.5              | 195          | 3 . 0       | 794.4        | 4 . 5        | 1911        | 1969         | 1307 | 751  |
| 9 . 5 5 | <b>6</b> 5       | 774          | 2 6         | 1164.1       | 6 D          | 2000        | 2000         | 1296 | 789  |
| C 15    | # 5              | 417          | 2 1         | 879 5        | 5 4          | 2000        | 2000         | 1310 | 64   |
| 0 35    | 105              | 311          | 2.7         | 825 9        | 4 . 3        | 1943        | 1885         | 1241 | 72   |
| C 55    | 125              | 445          | 2 1         | 941.1        | 5.4          | 2000        | 2000         | 1217 | 77   |
| 1.15    | 145              | 436          | 2 5         | 1013.1       | 4.2          | 2000        | 2000         | 1222 | 68.  |
| 1:35    | 165              | 336          | 2 5         | 874.0        | 5 1          | 1900        | 1931         | 1206 | 6.0  |
| 1 55    | 185              | 285          | 2 6         | 937 9        | 5 9          | 1739        | 1874         | 1090 | 70   |
| 2 · 15  | 265              | 405          | 1 9         | 1328 1       | 7 . 8        | 2000        | 2000         | 1100 | 6 5  |
| 2 35    | 225              | 414          | 2 . 6       | 1050.2       | 6.0          | 1954        | 2000         | 1061 | 74   |
| 2 5 5   | 245              | 376          | 2.6         | 959.3        | 5.3          | 1916        | 1900         | 1280 | 72   |
| 3.15    | 2 6 5            | 5 2 9        | 1.6         | 950 1        | 10.7         | 1993        | 2000         | 1051 | 57   |
| 3 35    | 265              | 351          | 3.4         | 1336 8       | 7.3          | 1917        | 2000         | 1108 | 69   |
| 3 5 5   | 305              | 286          | 3 C         | 1256 9       | 6.7          | 1782        | 1919         | 1140 | 5.8  |
| 4 15    | 3 2 5            | 350          | 3.0         | 1282.1       | 5 7          | 1855        | 1978         | 1344 | 75   |
| 4 - 35  | 345              | 313          | 3 1         | 1106.6       | 5 7          | 1984        | 1999         | 1071 | 67   |
| 4 55    | 365              | 272          | 2 . 8       | 1089.6       | 7 3          | 1486        | 1793         | 1247 | 6 9  |
| 5 15    | 365              | 286          | 2. 9        | 1140.6       | <b>6</b> . 5 | 1517        | 1733         | 1241 | 67   |
| 5 35    | 405              | 91           | 3.0         | 1002 6       | 7 1          | 259         | 311          | 1069 | 6.1  |
| 5 5 5   | 425              | 258          | 3 . 8       | 1339 8       | 7 2          | 1444        | 16:2         | 1130 | 73   |
| 6 15    | 445              | 190          | 3 8         | 1065.6       | 7.7          | 814         | 994          | 1153 | 75   |
| 6 35    | 465              | 179          | 3.3         | 1315 2       | 7.3          | 1451        | 1558         | 1223 | 5 8  |
| 6 5 5   | 485              | 233          | 4 0         | 1201.7       | 8 5          | 1727        | 1799         | 1057 | 80   |
| 7 15    | 505              | 9 6          | 3.4         | 1159 0       | 6.6          | 750         | 817          | 1071 | 73   |
| 7 35    | 525              | 85           | 3 5         | 1161.5       | 7.9          | 76 Z        | 851          | 1215 | 68   |
| 7.55    | 545              | 119          | 3 8         | 987 7        | 6.2          | 1038        | 1142         | 1015 | 6 2  |
| 8 15    | 565              | 60           | 3 4         | 1207.4       | 7.3          | 225         | 252          | 1329 | 8.6  |
| 8.35    | 565              | 43           | 3.0         | 1155.0       | 6.8          | 51          | 51           | 1324 | 121  |
|         | J <del>J J</del> | <b>~ ,</b>   |             |              | • . •        | - 1         | • 1          | 1004 | 164  |

Location: FOUR
Test Description TEST ONE
Date: NOVEMBER 19, 1993

| Time  | Elapsed | 502   | CO    | COZ    | THC   | NO    | NOI   | AIRI | AIRZ |
|-------|---------|-------|-------|--------|-------|-------|-------|------|------|
|       | Time    | (PPB) | (PPM) | (PPM)  | (PPH) | (PPB) | (PPB) |      |      |
| 0 0 5 | 15      | 44    | 2.6   | 725.1  | 7.0   | 1714  | 1943  | 1167 | 624  |
| 9:40  | 50      | 387   | 2.4   | 935.5  | 6.0   | 2000  | 2000  | 2229 | 709  |
| 0:00  | 70      | 436   | 2 7   | 978 7  | 5.3   | 2000  | 2000  | 1184 | 798  |
| 0:20  | 9 0     | 431   | 2.5   | 937.8  | 4 . 6 | 2000  | 2000  | 1331 | 614  |
| 0 40  | 110     | 403   | 2 . 4 | 937.0  | 5.1   | 2000  | 2000  | 1278 | 790  |
| 1 00  | 130     | 786   | 1.8   | 1048.2 | 5.7   | 2000  | 2000  | 1138 | 761  |
| 1 20  | 150     | 455   | 2.0   | 884.6  | 6.7   | 2000  | 2000  | 1301 | 826  |
| 1.40  | 170     | 433   | 2.3   | 989.0  | 5.0   | 1973  | 2000  | 1337 | 857  |
| 2.00  | 190     | 300   | 2 7   | 972.0  | 6.1   | 1876  | 1964  | 1220 | 756  |
| 2 20  | 210     | 266   | 2 . 6 | 940 7  | 5.9   | 1957  | 1971  | 1258 | 816  |
| 2 40  | 230     | 224   | 2.6   | 886.4  | 5 . 8 | 1870  | 1968  | 1190 | 804  |
| 3 00  | 250     | 255   | 2.7   | 886.5  | 12.6  | 1960  | 2000  | 1141 | 659  |
| 3:20  | 270     | 277   | 2.5   | 1211.2 | 11.2  | 2000  | 2000  | 1214 | 721  |
| 3:40  | 290     | 131   | 3.1   | 1017.3 | 4.6   | 1343  | 2492  | 1098 | 651  |
| 4 00  | 310     | 158   | 3.6   | 1288.9 | 8.4   | 1770  | 1902  | 1150 | 745  |
| 4 20  | 330     | 162   | 3 . 2 | 1222 2 | 6.6   | 1565  | 1686  | 1160 |      |
| 4 40  | 350     | 148   | 3 1   | 1226 5 | 8 3   | 1805  | 1929  | 1067 | 70   |
| 5 00  | 370     | 167   | 3.0   | 1087 B | 8 1   | 1458  | 1527  | 1205 | 723  |
| 5 20  | 390     | 176   | 3.1   | 1047.3 | 6.6   | 1609  | 1776  | 1368 | 744  |
| 5 40  | 410     | 57    | 2.9   | 1351 2 | 9 2   | 231   | 165   | 1096 | 670  |
| 6:00  | 430     | 128   | 4 1   | 1286 0 | 8 5   | 1577  | 1876  | 1101 | 630  |
| 5 20  | 450     | 107   | 3 7   | 1154 0 | 8.9   | 1322  | 1385  | 923  | 556  |
| 8 45  | 470     | 94    | 3 . 8 | 1419.9 | 8 5   | 1379  | 1470  | 1161 | 64   |
| 7.00  | 490     | 9.3   | 4 2   | 1403 1 |       | 1253  | 1327  | 1297 | 86   |
| 7:20  | 510     | 6.9   | 3 6   | 1269.6 | 1.4   | 819   | 444   | 1162 | 724  |
| 7 40  | 530     | 76    | 3.1   | 1162 1 | 8.5   | 842   | 1050  | 1208 | 671  |
| 8 00  | 550     | 67    | 3 0   | 1259.9 | 8.8   | 883   | 955   | 1205 | 76   |
| 6.20  |         | 45    | 3.7   | 1099.5 | 8.7   | 201   | 220   | 1362 | 102  |
| 8 4 C | 590     | 35    | 3.5   | 991.6  | 1.4   | 37    | 43    | 1191 | 1016 |

Lecation: ONE

Test Description: TEST TWO Date. NOVEMBER 30, 1863

| 71me<br>6:35 | Tibe  | (PPB)      | (PPH) |       |       |       |              |       |     |
|--------------|-------|------------|-------|-------|-------|-------|--------------|-------|-----|
|              | _     |            |       | (PPH) | (PPH) | (PPB) | (PPB)        |       |     |
|              | 15    | 122        | 1.1   | 844.3 | 16.7  | 1652  | 1036         | 515   | 37  |
| B: 55        | 35    | 104        | 1.0   | 788.8 | 17.4  | 518   | 725          | 848   | 46  |
| 9.15         | 5 5   | 542        | 1.7   | 961.4 | 17.3  | 1819  | 1923         | 535   | 37  |
| 9.35         | 75    | 458        | 2.8   | 796.4 | 17.4  | 1900  | 1983         | 5 8 8 | 47  |
| 8.55         | 9 5   | 344        | 1.5   | 735.9 | 15.8  | 1762  | 1953         | 498   | 47  |
| 0 15         | 115   | 315        | 1.4   | 628.8 | 16.1  | 1515  | 1580         | 543   | 4 3 |
| 0 35         | 135   | 438        | 1.3   | 844 0 | 16 7  | 1756  | 1953         | 531   | 44  |
| <b>0 5</b> 5 | 155   | 553        | 1.1   | 738.8 | 18.6  | 1910  | 1967         | 569   | 44  |
| 1 15         | 175   | 698        | 1.3   | 647.6 | 15.0  | 1864  | 1942         | 521   | 37  |
| 1 35         | 195   | .30        | 1.2   | 801.6 | 18.5  | 1969  | 1997         | 400   | 3 2 |
| 1 55         | 215   | 276        | 1.3   | 501.0 | 14 8  | 1111  | 1221         | 480   | 31  |
| 1 15         | 235   | 355        | 1.2   | 498.4 |       | 1440  | 1526         | 520   | 4 2 |
| 2 35         | 255   | 591        | 1.0   | 555.3 |       | 1861  | 1967         | 465   | 37  |
| 2 55         | 275   | 788        | 1 2   | 636 9 |       | 1911  | 1982         | 1     | 34  |
| 3.15         | 255   | 793        | 1.3   | 545.4 | 6 . 8 | 1932  | 1991         | 386   |     |
| 3 35         | 315   | 449        | 1.6   | 418.4 | 6.7   | 1767  | 1912         | 1     | 37  |
| 3 5 5        | 335   | 182        | 1.0   | 398.9 | 6.4   |       |              | 1     |     |
| 4 15         | 355   | 153        | 1 0   | 350 2 | 6 3   |       |              | 723   | 14  |
| 4 35         | 375   | <b>9</b> 2 | 1.0   | 275.1 | 6.7   | 441   | 498          | 1     |     |
| 4 55         | 395   | 110        | 1.1   | 310.5 | 6.7   | 765   | <b>8</b> 5 2 | ****  |     |
| 5 15         | 415   | 129        | Ð . 9 | 245.5 | 7 6   | 848   | 909          |       |     |
| 5.35         | 435   | 75         | 0.9   | 191.2 | 7 5   | ****  |              | 377   | 37  |
| 5:45         | 445   | ***        |       | ***   | ***   | ***   |              | ***   |     |
| 6 1 0 5      | 465   | 6 2        | 0 9   | 282.3 | 6.9   | ***   |              | 364   | 4 0 |
| 6 25         | 4 & 5 | 34         | 0.8   | 265.9 | 7.4   | ****  |              | 754   | 5 4 |
| 6 35         | 495   | 24         | 1.0   | 207.5 | 148.3 | 0     | 0            | 1840  | 171 |
| 6.55         | 515   | 3 2        | 1 3   | 170.7 | 147.0 | 19    | 26           | 671   | 7 6 |

Location: TVO

Test Description: TEST TWO Date: NOVEMBER 30, 1983

|        | Elapsed | 802   | CO    | COZ    | THC   | NO    | NOI   | AIRI | AIRZ  |
|--------|---------|-------|-------|--------|-------|-------|-------|------|-------|
| Time   | Time    | (PPB) | (PPM) | (PPH)  | (PPH) | (PPB) | (PPB) |      |       |
| 8 20   | . 0     | 23    | 0.7   | 882.5  | 16.0  | 4     | 4     | 432  | 34:   |
| 8:40   | 2.0     | 171   | 1.4   | 870.9  | 15.9  | 1048  | 1282  | 575  | 401   |
| . 00   | 40      | 416   | 1.4   | 821.7  | 17.7  | 1452  | 1583  | 550  | 361   |
| 9:20   | 60      | 742   | 1.6   | 1221.9 | 19.0  | 1940  | 1997  | 611  | 47    |
| 9 40   | ₿ 0     | 768   | 1.9   | 1065.6 | 18.1  | 1871  | 1990  | 515  | 49    |
| 0.00   | 100     | 364   | 1.2   | 593.5  | 17.2  | 1530  | 1663  | 531  | 14    |
| 0 20   | 120     | 437   | 1.3   | 750.Z  | 15.0  | 1488  | 1800  | 537  | 4 2 3 |
| 0 40   | 140     | 400   | 1.1   | 669.3  | 10.0  | 1597  | 1736  | 563  | 41    |
| 1 00   | 150     | 541   | 1.3   | 697.5  | 16.1  | 1929  | 1943  | 508  | 37    |
| 1.20   | 180     | 389   | 1.3   | 598.9  | 15.3  | 1822  | 1898  | 559  | 41    |
| 1 40   | 200     | 273   | 1.4   | 545.3  | 15.9  | 1632  | 1752  | 553  | 42    |
| 2:00   | 220     | 159   | 1.2   | 418.0  | 17.2  | 846   | 959   | 512  | 3 9   |
| 2.20   | 240     | 140   | 1.1   | 402.0  |       | 894   | 976   | 492  | 40    |
| 2.40   | 260     | 125   | 1.4   | 357.4  | ***   | 1147  | 1266  | 474  | 3 8   |
| 3:00   | 280     | 194   | 1.4   | 493.3  | ***   | 1514  | 1631  | 1    | 2 6   |
| 3.20   | 300     | 179   | 1.5   | 424.1  | 6.6   | 1668  | 1731  | 34   | 6     |
| 3:40   | 320     | 131   | 1.4   | 497.5  | 6.6   | 1431  | 1488  | 1    | 26    |
| 4.00   | 340     | 108   | 1.1   | 241.D  | 6 3   | 830   |       | 1    |       |
| 4 20   | 360     | 8 9   | 0 . 6 | 372.2  | 6.4   | 767   | 824   | 1    | 20    |
| 4:40   | 380     | 5 8   | 0 9   | 230.6  | 6.5   | 259   | 290   | 1    |       |
| 5.00   | 400     | 88    | 1.1   | 290.7  | 6 . B | 759   | 793   | ***  |       |
| 5 20   | 420     | 8.6   | 1.0   | 321.6  | 7.7   | . 20  | 988   |      | ***   |
| 5 . 40 | 440     | 64    | 0 9   | 272 7  | 7 4   |       |       | 413  | 41    |
| 5 50   | 450     | 5 5   | 1.0   | 237.9  | 7.3   |       | ***   | 324  | 3 5   |
| 6 10   | 470     | 4.8   | 0 9   | 168.7  | 7.4   |       | ***   | 331  | 3 3   |
| 6 30   | 490     | 36    | 0 9   | 335.7  | 8.0   |       | ***   | 959  | 76    |
| 6 4C   | 500     | ***   | 0 . 8 | 106.1  | 155.D |       |       | 1987 | 199   |
| 7 00   | 520     | ****  | 1.3   | 354 4  | 152 3 |       |       | 650  | 64    |

Location. THREE

Test Description: TEST TWO Date: NOVEMBER 30, 1883

|       | Elapsed | 802        | CO    | CO2   | THC   | NO    | NOX   | AIR1 | AIR   |
|-------|---------|------------|-------|-------|-------|-------|-------|------|-------|
| Time  | Time    | (PPB)      | (PPM) | (PPH) | (PPM) | (PPB) | (PPB) |      |       |
| 8 25  | 5       | <b>2</b> 2 | 0 6   | 790.3 | 18.4  | •     | •     | 465  | 36    |
| 8 45  | 25      | 23         | 1.0   | 836.4 | 16.4  | 9.6   | 108   | 538  | 30    |
| 9 05  | 4.5     | 24         | 0.9   | 634 1 | 18.8  | 257   | 290   | 532  | 41    |
| 9 25  | 6.5     | 36         | 1.1   | 771.7 | 17 6  | 871   | 934   | 514  | 43    |
| 9 45  | 8 5     | 30         | 1.3   | 720.0 | 16.5  | 832   | 916   | 640  | 5 3   |
| 0 05  | 105     | 27         | 0 9   | 621 6 | 17 3  | 373   | 410   | 513  | 3 9   |
| G 25  | 125     | 3 9        | 1 3   | 609.9 | 18.3  | 867   | 927   | 531  | 41    |
| 0 45  | 145     | 73         | 1.3   | 595.4 | 10.4  | 1173  | 1396  | 526  | 4 3   |
| 1 05  | 165     | 111        | 1.2   | 636.4 | 17.5  | 1428  | 1450  | 474  | 34    |
| 1 25  | 165     | 194        | 1 3   | 524.8 | 15.6  | 1572  | 1668  | 460  | 36    |
| 1 45  | 2 C 5   | 242        | 1 5   | 625.1 | 16.5  | 1816  | 1970  | 547  | 3 6   |
| 2.05  | 225     | 293        | 1 2   | 626.1 | 16.8  | 1890  | 1993  | 435  | 4.3   |
| 2 25  | 245     | 361        | 1.6   | 461.6 |       | 1914  | 1977  | 454  | 36    |
| 2 45  | 265     | 214        | 1.2   | 474.3 |       | 1376  | 1419  | 380  | 37    |
| 3 05  | 285     | 475        | 17    | 449.8 |       | 1998  | 1997  | 1    |       |
| 3.25  | 305     | 436        | 1 6   | 422 5 | 78    | 1956  | 1997  | 211  | 6     |
| 3 45  | 3 2 5   | 395        | 1.6   | 421.0 | 6.8   | 1990  | 1997  | 1    | 2 6   |
| 4.05  | 345     | 537        | 1 7   | 609 5 | 6 8   | 1998  | 1997  | 1    | -     |
| 4:25  | 365     | 453        | 1 5   | 447.2 | 6.8   | 1998  | 1997  | 174  | 2.0   |
| 4.45  | 385     | 409        | 1.3   | 435.4 | 6.9   | 1879  | 1976  | **** | ***   |
| 5 05  | 405     | 464        | 1 6   | 381.8 | 7.4   | 1998  | 1997  | ***  |       |
| 5 2 5 | 425     | 499        | 1.5   | 332.6 | 8.4   | 1998  | 1997  | 316  | 3 2   |
| 5 55  | 455     | 358        | 1 3   | 379.7 | 7.4   | 2122  | 2111  | 421  | 44    |
| 6 15  | 475     | ***        | 1 3   | 442.7 | 8.4   |       |       | 314  | 26    |
| 6:45  | 505     |            | ***   | ***   | 8588  | ***   | 1111  | 2111 | 2 * * |

Location. FOUR

Test Description. TEST TWO Bate: NOVEMBER 30, 1983

|       | Elapsed    | 502        | CO    | CO2   | THC     | NO    | NOI   | AIRI | AIR |
|-------|------------|------------|-------|-------|---------|-------|-------|------|-----|
| Time  | Tibe       | (PPB)      | (PPM) | (PPH) | (PES)   | (PPB) | (PPB) |      |     |
| 9 30  | 10         | 27         | 0 9   | 780 9 | 16.3    | 22    | 24    | 509  | 320 |
| 8 50  | 30         | 21         | 0 0   | 833 7 | 18.4    | 165   | 152   | 618  | 404 |
| 9 10  | 3 0        | 23         | 1 4   | 807 8 | 16 8    | 503   | 546   | 594  | 421 |
| 9 30  | 70         | 31         | 1 1   | 804.8 | 16.7    | 539   | 563   | 597  | 441 |
| 9 50  | <b>9</b> 0 | 31         | 1.3   | 739.5 | 15 8    | 480   | 509   | 609  | 590 |
| 10.10 | 110        | 27         | 1 2   | 673 6 | 15 9    | 548   | 583   | 570  | 411 |
| 10 30 | 130        | 3 6        | 1 6   | 682 3 | 17 8    | 743   | 793   | 548  | 41  |
| 0 50  | 150        | 37         | 1 4   | 642 7 | 17.5    | 967   | 1018  | 536  | 38  |
| 11 10 | 170        | 47         | 1.2   | 613 2 | 16.7    | 1131  | 1189  | 540  | 42  |
| 1 30  | 190        | 6.8        | 1 4   | 779 6 | 17 0    | 1295  | 1361  | 503  | 24  |
| 11:50 | 216        | 71         | 1.4   | 473 0 | 18 5    | 1461  | 1546  | 507  | 34  |
| 2 10  | 235        | 74         | 1.5   | 492 5 |         | 1459  | 1542  | 468  | 39  |
| 2 30  | 250        | 115        | 1.6   | 508 6 | 2 4 2 2 | 1699  | 1027  | 501  | 40  |
| 2:50  | 270        | <b>8</b> 5 | 1 2   | 565 5 |         | 1129  | 1180  | 1    | 31  |
| 3.10  | 290        | 122        | 1.5   | 428 7 |         | 1520  | 1567  | 1    |     |
| 3 30  | 310        | 161        | 1 4   | 526.2 | 6.8     | 1646  | 1735  | 1    | 22  |
| 3 50  | 330        | 283        | 1 6   | 521.8 | 6 9     | 1787  | 1883  | 8.8  |     |
| 4 10  | 350        | 306        | 1.5   | 395.0 | 6 6     | 1998  | 1997  | 3 5  | 2   |
| 4 30  | 370        | 355        | 1.6   | 417.3 | 7.1     | 1970  | 1997  | 2    | 4   |
| 4 50  | 390        | 384        | 1 5   | 395.2 | 7 2     | 1958  | 1997  |      |     |
| 5:10  | 410        | 517        | 1.6   | 525.7 | 8 0     | 1996  | 1997  | ***  |     |
| 5 3 C | 430        | 617        | 1.7   | 459.6 | 8 2     | ***   | ***   | 332  | 3 0 |
| 6 05  | 450        | 462        | 1.4   | 408.7 | 7.4     |       |       | 376  | 37  |
| 6 20  | 480        | 187        | 0.9   | 341.1 | 8 0     | ****  |       | 371  | 38  |
| 6.5G  | 510        | 2.5        | 0 7   | 314.0 | 144.5   | U     | 1     | 817  | 75  |

Location ONE

Test Description TEST THREE Date DECEMBER 1, 1983

|         | Elapsed    | 802   | CO    | COZ    | THC          | NO    | NOI   | AIRI | AIR |
|---------|------------|-------|-------|--------|--------------|-------|-------|------|-----|
| Time    | Time       | (PPB) | (PPM) | (PPM)  | (PPH)        | (PPB) | (PPB) |      |     |
| 8.00    | - 5        | 20    | 0.8   | 920 5  | 6.8          | 0     | 1     | 743  | 41  |
| 8.20    | 15         | 26    | 0.5   | 1074.8 | 6.7          | 21    | 29    | 290  | 26  |
| 8 40    | 3 5        | 31    | 0.8   | 1252.0 | 7.1          | 488   | 554   | 271  | 26  |
| 9 00    | <b>5</b> 5 | 3 2   | 1.1   | 1167.0 | <b>8</b> . Z | 310   | 340   | 231  | 24  |
| 9 2 G   | 75         | 4 6   | 1.0   | 1122.3 | 9.1          | 577   | 639   | 256  | 25  |
| 9 40    | 9 5        | 71    | 1.6   | 1092.1 | 7.7          | 840   | 949   | 254  | 2 9 |
| 0 0 0   | 115        | 5 Z   | 0.9   | 1246.5 | 7 5          | 405   | 436   | 233  | 24  |
| 0.20    | 135        | 8 9   | 1.2   | 1440.2 | 7.2          | 540   | 629   | 219  | 2 6 |
| 0 40    | 155        | 137   | 1.2   | 1491.8 | 7.3          | 729   | 815   | 213  | 2 5 |
| 1 00    | 175        | 195   | 1.1   | 1464.6 | 7.1          | 922   | 1056  | 288  | 2 7 |
| 1.20    | 195        | 223   | 1.1   | 1457.0 | 7.2          | 1152  | 1003  | 199  | 2 3 |
| 1 40    | 215        | 430   | 1.4   | 1641.8 | 7.5          | 1742  | 1998  | 221  | 2 3 |
| 2 00    | 235        | 364   | 1.3   | 1671.3 | 5.9          | 1599  | 1670  | 220  | 2 : |
| 2 20    | 255        | 134   | 1.2   | 1345.7 | 7.0          | 519   | 600   | 218  | 2 4 |
| 2:25    | 260        | 348   | 1.1   | 1581.9 | 7 1          | 1354  | 1706  | 273  | 3 1 |
| 2:45    | 280        | 126   | 1.1   | 1456.2 | 6.9          | 444   | 540   | 191  | 2 9 |
| 3 05    | 3 O C      | 3 8 1 | 1.4   | 1578 4 | 7.4          | 1657  | 1955  | 239  | 3 1 |
| 3 25    | 3 2 0      | 386   | 1.4   | 1545.1 | 7.0          | 2015  | 1968  | 223  | 2 4 |
| 3:45    | 340        | 388   | 1.5   | 1591.0 | 5.8          | 2157  | 1898  | 228  | 2 2 |
| 4 05    | 360        | 423   | 1.5   | 1639.3 | 6.7          | 1778  | 2054  | 203  | 26  |
| 4 25    | 380        | 324   | 1 5   | 1655.7 | 6.8          | 1387  | 1682  | 213  | 2 6 |
| 4 45    | 400        | 173   | 1.2   | 1501.8 | 7 0          | 753   |       | 150  | 1 9 |
| 5 0 5   | 420        | 399   | 1 5   | 1659.2 | 7.7          | 1785  | 1894  | 193  | 11  |
| 5 . 2 5 | 440        | 438   | 1.4   | 1691.8 | 7.5          | 1865  | 2155  | 209  | 2 3 |
| 5 . 4 5 | 460        | 385   | 1.5   | 1805.8 | 7.5          | 1588  | 1693  | 171  | 2 ( |
| 6 05    | 480        | 306   | 1.4   | 1724.9 | 7.0          | 1400  | 1599  | 206  | 2.3 |
| 6 . 2 5 | 500        | 37    | 1.2   | 1581.9 | 6.8          | 692   | 784   | 210  | 2 ( |
| 6.45    | 520        | 3 3   | 1.2   | 1720.0 | 7.2          | 511   | 573   | 196  | 10  |

Location: TV0

Test Description TEST THREE

Date: DECEMBER 1, 1983

|        | Elapsed | 802        | CO    | CO2    | THC                 | NO    | NOI   | AIRI | AIR |
|--------|---------|------------|-------|--------|---------------------|-------|-------|------|-----|
| Time   | Time    | (PPB)      | (PPM) | (PPH)  | (PPH)               | (PPB) | (PPB) |      |     |
| 8 05   | 0       | 19         | 1.2   | 1063.6 | <b>6</b> . <b>9</b> | 0     | 1     | 591  | 51( |
| 8:25   | 20      | 21         | 0.8   | 1000.0 | 7.3                 | 56    | 5 8   | 293  | 30. |
| 8 45   | 40      | 25         | 1.1   | 1129.4 | 6.8                 | 531   | 577   | 244  | 23  |
| 9 05   | € D     | 28         | 1.0   | 1158 9 | 10.4                | 206   | 217   | 272  | 2 6 |
| 9 25   | 83      | 2.6        | 1.3   | 1301.1 | 10.2                | 725   | 799   | 258  | 26  |
| 9 45   | 100     | 38         | 1.5   | 1390.5 | 9.0                 | 704   | 783   | 255  | 28  |
| € 05   | 120     | 3 3        | 1.4   | 1171.4 | 1.3                 | 500   | 548   | 209  | 25  |
| 0 25   | 140     | 4 3        | 1.1   | 1269.3 | • . 0               | 579   | 638   | 178  | 24  |
| 0.45   | 160     | 5 9        | 1 1   | 1513.9 | 7 . 6               | 577   | 639   | 214  | 26  |
| 1 . 05 | 180     | 6 8        | 1 1   | 1438.2 | 7.4                 | 678   | 743   | 218  | 24  |
| 1 25   | 200     | 6 9        | 1.2   | 1333.4 | 7.2                 | 672   | 735   | 193  | 24  |
| 1 45   | 220     | <b>8</b> 2 | 1.1   | 1332.6 | 7 1                 | 941   | 936   | 220  | 25  |
| 2 05   | 240     | 8 9        | 1.0   | 1380.2 | 5.7                 | 860   | 937   | 192  | 27  |
| 2.30   | 265     | 9 6        | 1.1   | 1360.4 | 7.2                 | 755   | . 36  | 246  | 31  |
| 1:50   | 265     | 5 0        | 1.0   | 1334.3 | 6.9                 | 126   | 150   | 195  | 30  |
| 3 10   | 305     | 153        | 1.1   | 1477.7 | 7.0                 | 964   | 1161  | 287  | 34  |
| 3 3 G  | 3 2 5   | 217        | 1.2   | 1558.0 | 7.0                 | 1248  | 1423  | 199  | 2 2 |
| 3 50   | 345     | 269        | 1.2   | 1582.3 | 6.9                 | 1407  | 1978  | 201  | 20  |
| 4:10   | 365     | 35€        | 1.4   | 1720.0 | 6.0                 | 1652  | 2132  | 223  | 2 5 |
| 4 30   | 365     | 276        | 1.4   | 1633.4 | 6 . 6               | 1337  | 1371  | 186  | 21  |
| 4:50   | 405     | 273        | 1.4   | 1669.0 | 7.5                 | 1236  | 1327  | 217  | 24  |
| 5 1 10 | 425     | 447        | 1.3   | 1822.5 | 7.6                 | 1943  | 1917  | 176  | 20  |
| 5:30   | 445     | 364        | 1.5   | 1784.4 | 7.7                 | 1495  | 1676  | 188  | 2 2 |
| 5.50   | 465     | 357        | 1.3   | 1642.7 | 7.4                 | 1712  | 1459  | 193  | 18  |
| 6.10   | 405     | 165        | 1.2   | 1765.1 | 7.1                 | 829   | 962   | 188  | 23  |
| 6.30   | 505     | 23         | 0.8   | 1452.0 | 5.9                 | 1     | 0     | 204  | 19  |
| 6 50   | 5 2 5   |            |       | ****   |                     |       |       | **** |     |

Lecation THREE

Test Description: TEST THREE

Date: DECEMBER 1, 1983

| 1            | lapsed | 802   | CO    | COZ    | THC   | No    | NOI   | AIRI | AIR |
|--------------|--------|-------|-------|--------|-------|-------|-------|------|-----|
| [ime         | Time   | (PPB) | (PPH) | (PPH)  | (PPH) | (PPB) | (PPB) |      |     |
| 8 10         | 5      | 306   | 1.6   | 1521.8 | 7.0   | 3885  | 4709  | 317  | 30  |
| 30           | 25     | 575   | 1.4   | 1596.1 | • 0   | 4382  | 4877  | 295  | 27  |
| <b>\$</b> 50 | 4.5    | 526   | 1.6   | 1502.3 | 7.9   | 3832  | 4291  | 243  | 25  |
| 9:10         | 6.5    | 380   | 1.6   | 1430.1 | 11.2  | 2011  | 3335  | 268  | 26  |
| 9 30         | 8.5    | 457   | 1.5   | 1539 4 | 10 2  | 3514  | 3250  | 299  | 29  |
| 9.50         | 105    | 352   | 1.6   | 1357.  | 9.8   | 3076  | 3256  | 251  | 26  |
| 0 10         | 125    | 363   | 1.6   | 1377.2 | 9.0   | 2707  | 2821  | 218  | 2 3 |
| 0 30         | 145    | 657   | 1.7   | 1699.9 | 9.1   | 4913  | 5199  | 184  | 22  |
| 0.50         | 165    | 536   | 1.7   | 1639.9 | 8.6   | 3741  | 4773  | 197  | 27  |
| 1.10         | 185    | 704   | 1.8   | 1852.3 | 8.4   | 4574  | 5422  | 191  | 21  |
| 1 3 0        | 205    | 700   | 1.7   | 1670.8 | 7.8   | 5187  | 5018  | 212  | 2 3 |
| 1:50         | 225    | 704   | 1.5   | 1808.6 | 7.8   | 4347  | 5320  | 106  | 24  |
| 2.10         | 245    | 533   | 1 5   | 1626.1 | 7.2   | 4249  | 4119  | 238  | 26  |
| 2:35         | 270    | 405   | 1 5   | 1646.3 | 7.7   | 3584  | 3732  | 264  | 27  |
| 2:55         | 290    | 51    | 0.9   | 1393.6 | 7.0   | 57    | ● 5   | 216  | 2 6 |
| 3.15         | 310    | 325   | 1.3   | 1644.4 | 7 . Z | 2521  | 2792  | 269  | 31  |
| 3 35         | 336    | 254   | 1.3   | 1728.1 | 7.2   | 2444  | 2485  | 200  | 24  |
| 3 5 5        | 350    | 202   | 1.4   | 1701.4 | 7.1   | 2021  | 2152  | 175  | 2 2 |
| 4 15         | 370    | 358   | 1.5   | 1709.0 | 7.1   | 2754  | 3097  | 226  | 26  |
| 4 35         | 390    | 173   | 1.3   | 1620.1 | 7.2   | 1935  | 2091  | 200  | 24  |
| 4 55         | 410    | 8 6   | 1.2   | 1663.1 | 7.4   | 1275  | 1357  | 220  | 24  |
| 5:15         | 430    | 225   | 1.2   | 1501.0 | 7 . 5 | 2889  | 3086  | 204  | 2.3 |
| 5 35         | 450    | 198   | 1.3   | 1611.5 | 7.3   | 2082  | 2353  | 217  | 2.1 |
| 5 - 5 5      | 470    | 75    | 1 0   | 1673.8 | 7.0   | 931   | 1019  | 186  | 2 1 |
| 6 15         | 490    | 40    | 1.1   | 1513.9 | 7.0   | 129   | 155   | 176  | 2 ( |
| 6.35         | 510    | 2 1   | 1.0   | 1388.8 | 2 1   | 1     | 1     | 206  | 2 ( |

Location FOUR
Test Description: TEST THREE
Date: DECEMBER 1, 1863

| 1       | Elapsed    | 302   | CO    | CDS    | THC        | NO    | NOI   | AIR1 | AIR |
|---------|------------|-------|-------|--------|------------|-------|-------|------|-----|
| Time    | Time       | (PPB) | (PPM) | (PPH)  | (PPM)      | (PPB) | (PPB) |      |     |
| 8.15    | 10         | 493   | 1 0   | 1305 2 | 7.3        | 5841  | 5816  | 200  | 261 |
| 6 35    | 30         | 494   | 2.0   | 1474 6 | 7 8        | 4238  | 4154  | 289  | 290 |
| 8 55    | 50         | 574   | 2 2   | 1499 Z | . 0        | 4218  | 4516  | 221  | 24  |
| 9 15    | 70         | 456   | 1 0   | 1439 0 | 9.7        | 3055  | 3505  | 235  | 24  |
| 9.35    | <b>9</b> 0 | 491   | 1.7   | 1464 0 |            | 4224  | 4070  | 221  | 26  |
| 9.55    | 110        | 384   | 1.7   | 1453 0 | 8.7        | 2675  | 2986  | 221  | 2.6 |
| 0 15    | 130        | 336   | 1.6   | 1603 9 | <b>8</b> 2 | 2444  | 2626  | 194  | 24  |
| 0 35    | 150        | 417   | 1.6   | 1596 5 | 0 1        | 3220  | 3501  | 210  | 22  |
| 0 55    | 170        | 399   | 1.7   | 1711.3 | 8.1        | 3069  | 3613  | 218  | 24  |
| 1.15    | 190        | 247   | 1 8   | 1541 1 | 7.5        | 2624  | 2043  | 183  | 2.1 |
| 1 35    | 210        | 179   | 1.6   | 1608.2 | 7.3        | 2390  | 2439  | 206  | 2 9 |
| 1 55    | 230        | 165   | 1.6   | 1501.8 | 7.5        | 2207  | 2333  | 222  | 27  |
| 2 15    | 250        | 133   | 1.5   | 1393.5 | 7 3        | 1939  | 2038  | 235  | 26  |
| 2.40    | 275        | 116   | 1.4   | 1552.7 | 7.8        | 1893  | 1985  | 217  | 2.2 |
| 3 00    | 295        | 5 5   | 0 9   | 1458.8 | 7 3        | 323   | 341   | 186  | 24  |
| 3.20    | 315        | 105   | 1.3   | 1609 5 | 7.1        | 1834  | 1934  | 292  | 3 3 |
| 3 . 4 6 | 335        | 102   | 1.5   | 1593.8 | 7.0        | 1860  | 1956  | 218  | 28  |
| 4 00    | 355        | 106   | 1.5   | 1796.1 | 7.0        | 1894  | 1986  | 186  | 20  |
| 4 20    | 375        | 109   | 1.4   | 1765.3 | 6 9        | 1813  | 1925  | 218  | 28  |
| 4:40    | 395        | 9 6   | 1 . 2 | 1818 7 | 7.2        | 1536  | 1624  | 176  | 24  |
| 5.00    | 415        | 8 2   | 1 2   | 1730.5 | 7 3        | 1385  | 1470  | 194  | 2 3 |
| 5 20    | 435        | 81    | 1 2   | 1656.6 | 7 4        | 1590  | 1681  | 210  | 2 2 |
| 5 4 C   | 455        | 128   | 1 5   | 1942 8 | 7.7        | 2326  | 2615  | 195  | 2 2 |
| 6 00    | 475        | 6 2   | 1.1   | 1573 1 | 7.1        | 814   | 949   | 152  | 20  |
| 6 25    | 495        | 41    | 1.1   | 1574 2 | 7.2        | 140   | 149   | 185  | 2 3 |
| 6.40    | 515        | 3 8   | 0 9   | 1619.4 | 7.3        | 9 9   | 102   | 190  | 18  |

Location ONE

Test Description: TEST FOUR Date: DECEMBER 2, 1983

|        | Elapsed | 802   | CO    | CO2          | THE          | NO    | NOI   | AIR1 | AIR |
|--------|---------|-------|-------|--------------|--------------|-------|-------|------|-----|
| Time   | Time    | (PPB) | (PPM) | (PPM)        | (PPH)        | (PPB) | (PPB) |      |     |
| 8:10   | -10     | 24    | 1.2   | 1 4          | <b>6</b> . 0 | 13    | 15    | 121  | 147 |
| 8 30   | 10      | 110   | 1.8   | 5.4          | 6.3          | 1739  | 1913  | 123  | 137 |
| 8:50   | 30      | 406   | 1 9   | 14.7         | 6.8          | 2630  | 2855  | 114  | 14  |
| 9.10   | 50      | 435   | 1.9   | 5.2          | 6.9          | 2292  | 2766  | 98   | 114 |
| 9 30   | 70      | 851   | 1.9   | 15 6         | 7.4          | 4185  | 4551  | 102  | 124 |
| 9:50   | 90      | 964   | 1.6   | 17.0         | 7.4          | 5135  | 5765  | 127  | 13  |
| 6-16   | 116     | 574   | 1.7   | 1 7          | 7.2          | 3130  | 3278  | 193  | 15  |
| 0 - 30 | 130     | 527   | 1.9   | 7.6          | 7.0          | 2574  | 2984  | 223  | 20  |
| 6 50   | 150     | 612   | 1 7   | 9.6          | 7.2          | 3056  | 2876  | 294  | 29  |
| 1 10   | 170     | 747   | 1.7   | 21.5         | 7.2          | 3514  | 4524  | 213  | 20  |
| 1:35   | 190     | 781   | 1.6   | 14.9         | 7.1          | 4076  | 4548  | 268  | 25  |
| 1 50   | 210     | 799   | 1.7   | 14 3         | 7.2          | 4014  | 5063  | 250  | 2 8 |
| 2:15   | 230     | 778   | 1.7   | 9 . 2        | 7 1          | 3008  | 3640  | 178  | 19  |
| 2.30   | 250     | 564   | 1.6   | 25.5         | 6.1          | 2619  | 2086  | 256  | 27  |
| 2:50   | 270     | 397   | 1.6   | 12.4         | 6.7          | 1720  | 1963  | 147  | 10  |
| 3.10   | 290     | 376   | 1.6   | 6.1          | 6 1          | 1793  | 2285  | 165  | 16  |
| 3.30   | 310     | 431   | 1.8   | <b>6</b> . D | 6 7          | 2399  | 2564  | 175  | 20  |
| 3 50   | 330     | 226   | 1.6   | 7.4          | 6.9          | 1509  | 1744  | 161  | 15  |
| 4:10   | 350     | 284   | 1.7   | 12.9         | 6 6          | 1509  | 1704  | 312  | 36  |
| 4 - 30 | 370     | 268   | 1.5   | 3.1          | 6.9          | 1328  | 1527  | 295  | 35  |
| 4 50   | 390     |       | 1.1   |              | 5.8          | 1539  | 1491  | 288  | 34  |
| 5:10   | 410     | 131   | 1 . 4 |              | 6.8          | 921   | 1010  | 333  | 3 3 |
| 5 30   | 430     | 101   | 1 6   |              | 6 9          | 075   | 970   | 297  | 31  |
| 5 50   | 450     | 219   | 1.7   | ***          | 7 4          | 2119  | 2524  | 341  | 40  |
| 6 10   | 475     | 5 8   | 1.3   | ****         | 7.4          | 271   | 303   | 290  | 33  |

Lecation: TWO

Test Description: TEST FOUR Date: DECEMBER 2, 1883

|       | Elapsed | 802        | CO    | COZ   | THE   | NO    | NOI   | AIRI | AIR |
|-------|---------|------------|-------|-------|-------|-------|-------|------|-----|
| Time  | Time    | (PPB)      | (PPH) | (PPH) | (PPH) | (PPB) | (PPB) |      |     |
| 8 15  | -5      | 22         | 1 2   | 3.2   | 6.1   | 14    | 14    | 131  | 16  |
| 8:35  | 15      | 471        | 2.0   | 3.5   |       | 2991  | 3264  | 116  | 15  |
| 8 55  | 3 5     | 504        | 1.7   | 6.7   | 7.0   | 2546  | 2646  | 96   | 22  |
| 9 15  | 5 5     | 762        | 1.8   | 3.0   | 7 . 2 | 3321  | 3749  | 94   | 11  |
| 9 35  | 75      | 842        | 17    | 17.6  | 7.3   | 3929  | 4351  | 115  | 14  |
| B 55  | 95      | 733        | 1.4   | 8.8   | 7.5   | 3967  | 4822  | 186  | 12  |
| G 15  | 115     | 723        | 1.9   | 21.9  | 7.4   | 3187  | 3409  | 182  | 14  |
| 0 35  | 135     | 697        | 1 8   | 6.9   | 6.9   | 2837  | 3673  | 187  | 17  |
| 0 55  | 155     | 453        | 1.7   | 8 5   | 7.2   | 2240  | 2438  | 274  | 27  |
| 1.15  | 175     | 382        | 1.6   | 4 D   | 6 9   | 2170  | 2348  | 270  | 26  |
| 11:35 | 195     | 405        | 1.7   | 18.3  | 6 8   | 2641  | 2759  | 256  | 24  |
| 1 55  | 215     | 296        | 1.5   | 4.1   | 7.1   | 2026  | 2259  | 234  | 25  |
| 2 15  | 235     | 342        | 1 7   | 35.6  | 6.9   | 1874  | 2003  | 169  | 17  |
| 2:35  | 255     | 379        | 17    | 12.8  | 6.7   | 2014  | 2322  | 195  | 19  |
| 2:55  | 275     | 309        | 2.6   | 4.5   | \$.5  | 1945  | 1996  | 186  | 20  |
| 3.15  | 295     | 275        | 1.5   | 2.5   | 6.9   | 1823  | 1979  | 193  | 20  |
| 3 35  | 315     | 307        | 1.7   | 18 1  | 6 8   | 1887  | 2119  | 174  | 20  |
| 3 55  | 335     | 308        | 1.7   | 13.5  | 7.0   | 1946  | 2196  | 235  | 27  |
| 4 15  | 355     | 115        | 1.5   | 12 4  | 6 6   | 1386  | 1506  | 333  | 34  |
| 4 35  | 375     | 84         | 1.7   | ****  | 6 . 8 | 1016  | 1091  | 304  | 36  |
| 4 55  | 395     | <b>●</b> B | 1.8   |       | 6.8   | 1084  | 1225  | 360  | 42  |
| 5 15  | 415     | 180        | 1.7   | ***   | 6.8   | 1423  | 1570  | 253  | 27  |
| 5 35  | 435     | 6.5        | 1.5   |       | 7 0   | 694   | 759   | 370  | 41  |
| 5 5 5 | 455     | 6 6        | 1.6   |       | 7 3   | 866   | 924   | 319  | 39  |
| S 15  | 475     | 4 2        | 1.1   |       | 7 Z   | 215   | 232   | 248  | 2 9 |

Lecation: THREE

Test Description: TEST FOUR Date: DECEMBER 2, 1983

|         | Elapsed    | 802   | CO    | COZ   | THC   | NO    | NOI   | AIR1 | AIR |
|---------|------------|-------|-------|-------|-------|-------|-------|------|-----|
| Time    | Time       | (PPB) | (PPH) | (PPH) | (PPH) | (PPB) | (PPB) |      |     |
| . 00    | -20        | 20    | 1 0   | 898.3 | ****  | 1     | 1     | 123  | 14  |
| 8 20    | 0          | 2.8   | 1.4   | 0.0   | 5 . 8 | 14    | 15    | 112  | 14  |
| 8 40    | 20         | 28    | 1 3   | 0.0   | 6.5   | 139   | 156   | 111  | 13  |
| 9 00    | 40         | 164   | 1.0   | 11 0  | 7.1   | 2885  | 2253  | 96   | 12  |
| 3 20    | <b>6</b> C | 156   | 1.7   | 7.6   | 7.1   | 2935  | 3179  | 102  | 11  |
| 9 40    | <b>₽</b> D | 174   | 1.7   | 15 6  | 7.1   | 2550  | 2622  | 9.8  | 12  |
| 0 0 0   | 100        | 223   | 1 9   | 6 . 4 | 7.4   | 2756  | 2895  | 158  | 12  |
| D 2 C   | 120        | 374   | 1 9   | 10 0  | 7 4   | 4101  | 4418  | 170  | 12  |
| 0 40    | 140        | 406   | 2 0   | 8.1   | 7 1   | 3547  | 3799  | 242  | 21  |
| 1 00    | 160        | 500   | 1 8   | 13 7  | 7.3   | 4277  | 4662  | 239  | 2 2 |
| 1 26    | 100        | 351   | 2 . D | 5 5   | 7.1   | 3278  | 3457  | 194  | 16  |
| 1 40    | 200        | 549   | 2.0   | 16 4  | 7.3   | 4310  | 5368  | 248  | 2 3 |
| 2 00    | 220        | 411   | 1.9   | 8 5   | 7.2   | 3076  | 3809  | 213  | 2 3 |
| 2 20    | 240        | 571   | 2.1   | 32 1  | 7 5   | 5237  | 5485  | 203  | 2 3 |
| Z : 4 D | 260        | 763   | 2 1   | 13 6  | 7 4   | 6276  | 6693  | 176  | 16  |
| 3 O C   | 100        | 540   | 2 1   | 37 4  | 7.3   | 4803  | 4970  | 204  | 16  |
| 3 2 0   | 306        | 531   | 2 0   | 23.6  | 7 2   | 4219  | 4412  | 172  | 16  |
| 3 4 C   | 320        | 447   | 2 1   | 8.4   | 7 4   | 3775  | 4103  | 146  | 14  |
| 4 00    | 340        | 211   | 1 6   | 4 9   | 6 9   | 1653  | 1832  | 249  | 2 6 |
| 4 20    | 360        | 577   | 1 9   | 13 5  | 7.1   | 4505  | 5274  | 273  | 3 0 |
| 4 40    | 380        | 586   | 2.1   |       | 7.2   | 4741  | 5493  | 354  | 4.2 |
| 5.00    | 400        | 394   | 2.1   |       | 7 1   | 3658  | 3991  | 339  | 3 6 |
| 5:20    | 420        | 524   | 2.1   |       | 7.3   | 4293  | 4278  | 218  | 24  |
| 5 . 4 D | 440        | 551   | 2.2   |       | 7.6   | 3982  | 4112  | 337  | 37  |
| 6 05    | 4 6 C      | 542   | 2.1   |       | 7.8   | 3764  | 4083  | 355  | 3 7 |
| 6 20    | 480        |       | ***   |       |       |       | ***   | **** |     |

Location FOUR

Test Description: TEST FOUR

Bate: DECEMBER 2. 1983

| 1      | Elapsed | 502   | CO    | COZ   | THC   | NO    | NOI   | AIRI       | AIR |
|--------|---------|-------|-------|-------|-------|-------|-------|------------|-----|
| Time   | Time    | (PPB) | (PPH) | (PPH) | (PPH) | (PPB) | (PPB) |            |     |
| 8 05   | -15     | 20    | 1.0   | 5.7   | 10.9  | 14    | 17    | 109        | 13  |
| 0:25   | 5       | 22    | 1.1   | 33.4  | 6.3   | 15    | 17    | 100        | 13  |
| 8 - 45 | 2.5     | 2 9   | 1 3   | 12.8  | 6.3   | 162   | 154   | 115        | 12  |
| 9 05   | 4.5     | 126   | 2.2   | 20.6  | 7.0   | 3748  | 3932  | <b>9</b> 0 | 12  |
| 9 25   | 6.5     | 120   | 1.8   | 50 4  | 7.0   | 3041  | 3161  | 101        | 12  |
| 9 45   | 0.5     | 104   | 1 6   | 13.9  | 6.8   | 2173  | 2268  | 126        | 15  |
| 0 05   | 105     | 155   | 1 8   | 37.6  | 7 2   | 2977  | 3176  | 199        | 16  |
| 0 25   | 125     | 175   | 1.0   | 19.6  | 7.0   | 3144  | 3309  | 187        | 16  |
| 0.45   | 145     | 286   | 2.0   | 20.2  | 7.2   | 3894  | 4080  | 226        | 2 3 |
| 1:05   | 165     | 236   | 2 1   | 24 6  | 7.3   | 3599  | 3926  | 221        | 10  |
| 1.25   | 185     | 209   | 1.9   | 7.4   | 7.1   | 2790  | 3071  | 274        | 2   |
| 1.45   | 205     | 363   | 2.0   | 21.0  | 7.3   | 3625  | 3820  | 271        | 24  |
| 1:05   | 225     | 445   | 2.2   | 1.6   | 7.3   | 4119  | 4400  | 176        | 10  |
| 2:25   | 245     | 516   | 2.2   | 17.4  | 7.4   | 4943  | 5418  | 178        | 11  |
| 2:45   | 265     | 460   | 2.3   | 8.2   | 7 1   | 4595  | 5038  | 185        | 2 : |
| 3 05   | 285     | 461   | 2 2   | 27.4  | 7.4   | 4392  | 4643  | 176        | 19  |
| 3 25   | 305     | 478   | 2 . 1 | 27.1  | 7.2   | 4047  | 4600  | 193        | 2 3 |
| 3 45   | 325     | 146   | 17    | 25.6  | 7.1   | 1384  | 1532  | 201        | 16  |
| 4:05   | 345     | 245   | 1.6   | 44.6  | 6 . B | 1840  | 2044  | 313        | 3 4 |
| 4:25   | 365     | 652   | 2.3   | 40.2  | 7.3   | 5377  | 5099  | 296        | 3 ( |
| 4 45   | 385     | 575   | 2 1   | ***   | 7.3   | 4875  | 5830  | 343        | 3 ' |
| 5 05   | 405     | 177   | 1.8   |       | 7.0   | 2003  | 1888  | 267        | 3 : |
| 5 25   | 425     | 551   | 1.9   |       | 7.5   | 4175  | 4409  | 220        | 21  |
| 5:45   | 445     | 637   | 2.5   | ***   | 7 9   | 4551  | 4777  | 318        | 3   |
| 6 05   | 465     | 647   | 2 1   | ****  | 7.9   | 4612  | 4736  | 313        | 3 ( |

Location: ONE

Test Description: TEST FIVE

Date: DECEMBER 5, 1981

| 1       | Elapsed    | 802   | CO    | COZ   | THC   | NO    | NOI   | AIRI | AIR |
|---------|------------|-------|-------|-------|-------|-------|-------|------|-----|
| [ime    | Time       | (PPB) | (PPH) | (PPH) | (PPH) | (PPB) | (PPB) |      |     |
| 15      | 0          | 20    | 0 9   |       |       | 7     | 3     | 227  | 241 |
| 35      | 20         | 40    | 1.1   |       | 7 5   | 354   | 317   | 203  | 27  |
| 5.5     | 4 0        | 70    | 1.3   |       | 7.7   | 1152  | 1231  | 176  | 20  |
| 15      | 6.0        | 123   | 17    |       | 7.7   | 1548  | 1762  | 243  | 28  |
| 35      | <b>8</b> 0 | 124   | 1.6   | 009 5 | 7.8   | 1211  | 1370  | 204  | 2 3 |
| 5.5     | 100        | 113   | 1.8   | 709.8 | 14.5  | 1021  | 1117  | 244  | 27  |
| 0.15    | 120        | 9 5   | 1.5   | 701.7 | 8 . 5 | 757   | 847   | 328  | 28  |
| 3.3     | 140        | 169   | 1.6   | 691 6 | 7.7   | 1107  | 1348  | 220  | 2.0 |
| 0.55    | 160        | 325   | 2.1   | 780.0 | 7.8   | 1901  | 2161  | 243  | 2 3 |
| 1 15    | 180        | 319   | 17    | 750 0 | 7.4   | 2057  | 1879  | 209  | 27  |
| 1 - 35  | 200        | 371   | 2 2   | 834.2 | 7.8   | 2001  | 2337  | 245  | 2.6 |
| 1.55    | 220        | 424   | 1.9   | 745.7 | B . D | 2245  | 2521  | 294  | 3 3 |
| 2 15    | 240        | 407   | 2 0   | 856.8 | 7.9   | 1955  | 2156  | 297  | 2   |
| 2.35    | 260        | 460   | 1.0   | 853.4 | 7 6   | 2585  | 2910  | 354  | 30  |
| 2 5 5   | 280        | 420   | 1.9   | 778.1 | 7.8   | 1831  | 2007  | 422  | 41  |
| 3 15    | 300        | 398   | 17    | 725.5 | 7.8   | 1750  | 2048  | 330  | 3 2 |
| 3:35    | 320        | 456   | 1.9   | 783.5 | 7.6   | 2123  | 2200  | 310  | 34  |
| 3:55    | 340        | 474   | 1.9   | 815.8 | 7.5   | 2108  | 2260  | 233  | 3 5 |
| 6 15    | 360        | 431   | 1.9   | 731.6 | 7 7   | 2142  | 2292  | 390  | 44  |
| 4:35    | 360        | 30i   | 1.6   | 662.7 | 7 7   | 1553  | 1677  | 282  | 3 2 |
| 4 55    | 400        | 367   | 1.7   | 611.3 | 7 5   | 1612  | 1827  | 370  | 44  |
| 5:15    | 420        | 359   | 1.5   | 619.7 | 7.4   | 1623  | 1827  | 361  | 4 3 |
| 5 - 3 5 | 440        | 398   | 1 7   | 753.1 | 7.2   | 2038  | 2262  | 351  | 3 ( |
| 5 5 5   | 450        | 341   | 1 6   | 665 3 | 7.2   | 1996  | 2338  | 331  | 3 5 |

Location: TWO

Test Description: TEST FIVE Date: DECEMBER 5, 1883

| :           | Elapsed | <b>S</b> O2 | CO    | COZ    | THC   | NO    | NOI   | AIRI | AIR |
|-------------|---------|-------------|-------|--------|-------|-------|-------|------|-----|
| Time        | Time    | (PPB)       | (PPH) | (PPH)  | (PPH) | (PPB) | (PPB) |      |     |
| . 00        | -15     | 35          | 0.7   | 1912.4 | ***   | 3     | 4     | 142  | 19: |
| <b>0</b> 20 | 5       | 26          | 0.9   |        | 7 6   | 35    | 37    | 196  | 21  |
| 8 40        | 25      | 27          | 0 9   |        | 7.4   | 313   | 330   | 223  | 25  |
| 9 00        | 4.5     | 38          | 1.2   |        | 7.7   | 924   | 960   | 267  | 20  |
| 9 20        | 6 5     | 41          | 1.5   |        | 7.6   | 1134  | 1200  | 218  | 25  |
| 9:40        | 8 5     | 49          | 1.3   | 744.0  | ● . 0 | 982   | 1031  | 249  | 27  |
| 10 03       | 105     | 182         | 1.2   | 849.5  | 7 2   | 1061  | 1337  | 271  | 3 3 |
| 11.00       | 165     | 54          | 1.6   | 615.5  | 7 8   | 043   | 1016  | 247  | 26  |
| 11-20       | 185     | 6.1         | 1.5   | 698.6  | 7.5   | 1016  | 1093  | 327  | 34  |
| 11-40       | 205     | 100         | 1.6   | 638.5  | 7.9   | 1166  | 1315  | 250  | 28  |
| 12:00       | 225     | 97          | 1.6   | 771.7  | 7.8   | 1137  | 1233  | 333  | 3 5 |
| 12:20       | 245     | 121         | 1.5   | 747 8  | 7 6   | 1143  | 1301  | 302  | 33  |
| 12:40       | 265     | 247         | 1.7   | 808.5  | 7.5   | 1714  | 1946  | 347  | 37  |
| 13 00       | 285     | 153         | 1.7   | 685.5  | 7.8   | 1007  | 1167  | 376  | 38  |
| 13 20       | 305     | 313         | 1.7   | 706.8  | 7 7   | 1636  | 1755  | 232  | 27  |
| 13 40       | 325     | 371         | 1 7   | 762 4  | 7 . 6 | 1909  | 2245  | 366  | 37  |
| 14 00       | 345     | 474         | 1.9   | 720.4  | 7 7   | 2151  | 2878  | 285  | 3 3 |
| 14 20       | 365     | 459         | 1.9   | 682.6  | 7.7   | 2082  | 2458  | 415  | 49  |
| 14 40       | 385     | 352         | 1 8   | 804.9  | 7.7   | 1991  | 2132  | 275  | 3 3 |
| 15.00       | 405     | 417         | 1.6   | 707.3  | 7 6   | 1622  | 2244  | 356  | 46  |
| 15 25       | 4 2 5   | 367         | 1.6   | 582.7  | 7.2   | 1799  | 1778  | 362  | 38  |
| 15 46       | 445     | 405         | 1 7   | 723.7  | 7 1   | 2080  | 2099  | 350  | 4.5 |
| 16 CC       | 465     | 182         | 1.2   | 849.5  | 7 2   | 1061  | 1337  | 271  | 33  |

Location THREE

Test Description: TEST FIVE Date: DECEMBER 5, 1983

|     | 1   | Elapsed | 502   | CO    | CO2    | THC        | NO    | NOI   | AIRL | AIRZ  |
|-----|-----|---------|-------|-------|--------|------------|-------|-------|------|-------|
| Ti  | •   | Time    | (PPB) | (PPM) | (PPH)  | (PPH)      | (PPB) | (PPB) |      |       |
|     | 05  | -10     | 34    | 0.6   | 1920 2 | ***        | 1     | 2     | 115  | 147   |
|     | 25  | 10      | 1517  | 1.6   |        | 8.5        | 6858  | 7190  | 197  | 273   |
|     | 4.5 | 30      | 1487  | 2 1   |        | 8.4        | 6279  | 6625  | 136  | 203   |
| 9   | C 5 | 5 0     | 1365  | 1.9   |        | 8.5        | 5814  | 6340  | 228  | 262   |
| •   | 25  | 70      | 1688  | 1.9   |        | 8 2        | 6366  | 6632  | 249  | 248   |
| 9   | 45  | 9 0     | 1439  | 1.8   | 1075.8 | 0 5        | 5431  | 6097  | 233  | 246   |
| 0   | 0 5 | 110     | 1450  | 2 2   | 1219 6 | 13 7       | 5968  | 6264  | 231  | 281   |
| ũ   | 25  | 130     | 1223  | 2 0   | 949.5  | 9.1        | 5025  | 5563  | 294  | 313   |
| ε   | 4.5 | 150     | 1304  | 1 8   | 981.9  | 8.4        | 5542  | 5980  | 214  | 26    |
| 1   | 0 5 | 170     | 1350  | 1.8   | 963.6  | 8.2        | 5842  | 5726  | 280  | 29    |
| :   | 25  | 190     | 1304  | 1 8   | 969.7  | 8.0        | 5571  | 5351  | 253  | 26    |
| 1   | 4.5 | 110     | 1509  | 1.7   | 1003.5 | <b>8</b> 2 | 5691  | 6182  | 277  | 29    |
| 2 . | D 5 | 230     | 1213  | 1.7   | 981.4  | 8 Z        | 4222  | 5083  | 308  | 34    |
| 2   | 25  | 250     | 1158  | 1.7   | 913.9  | 7.8        | 4665  | 4058  | 347  | 3 2 3 |
| 2 : | 45  | 270     | 618   | 1 4   | 699.B  | 7 8        | 2356  | 2400  | 363  | 374   |
| 3   | 0.5 | 290     | 832   | 1 4   | 790 3  | 8 0        | 3244  | 3553  | 321  | 30    |
| ŝ   | 25  | 310     | 904   | 1.4   | 777 1  | 7 8        | 3775  | 3984  | 235  | 22    |
| 3 - | 4.5 | 330     | 664   | 1.5   | 770.8  | 7.6        | 3024  | 3108  | 336  | 36    |
| 4   | 0.5 | 350     | 834   | 1.6   | 764 6  | 7 7        | 3572  | 3702  | 311  | 3 4   |
| 4   | 2.5 | 370     | 276   | 1 4   | 675.4  | 7 6        | 2381  | 2368  | 416  | 40    |
|     | 45  | 350     | 753   | 1.6   | 740.9  | 7 8        | 4036  | 4141  | 173  | 24    |
|     | 05  | 410     | 255   | 1.2   | 572 4  | 7.6        | 1978  | 2200  | 422  | 45    |
|     | 2.5 | 430     | 3 8 5 | 1 4   | 806.5  | 7.3        | 3726  | 3962  | 374  | 37    |
|     | 4.5 | 450     | 125   | 1 0   | 525.2  | 7.0        | 1325  | 1366  | 351  | 3.5   |

Location: FOUR

Test Description: TEST FIVE Date: DECEMBER 5, 1983

|       | Elapsed | 802   | CO    | COS    | THC        | NO    | NOI   | AIRI | AIR |
|-------|---------|-------|-------|--------|------------|-------|-------|------|-----|
| Time  | Time    | (PPB) | (PPH) | (PPH)  | (PPH)      | (PPB) | (PPB) |      |     |
| 8 10  | - 5     | 30    | 0 9   | ****   |            | 2     | 2     | 212  | 28  |
| 8 30  | 15      | 1160  | 2 0   |        | 0.4        | 6642  | 7192  | 190  | 233 |
| 8 50  | 3 5     | 1522  | 1.7   |        | 6.7        | 6535  | 6897  | 137  | 20  |
| 9:10  | 5 5     | 1355  | 2 0   |        | 8.5        | 3600  | 6194  | 257  | 26  |
| 9 30  | 75      | 1298  | 1.9   |        | 8.1        | 5257  | 5587  | 193  | 26  |
| 9.50  | 9.5     | 1292  | 1.9   | 1059.2 | 0.8        | 5003  | 5205  | 203  | 21  |
| 10 10 | 115     | 1106  | 2 0   | 1088 7 | 11.4       | 4511  | 4989  | 302  | 30  |
| 10.30 | 135     | 1197  | 1 8   | 1103 5 | 8.7        | 5203  | 5295  | 247  | 29  |
| 10 50 | 155     | 1081  | 2 0   | 925.9  | 8 2        | 4892  | 5244  | 204  | 22  |
| 11.10 | 175     | 1005  | 1 6   | 912.1  | 7 9        | 4555  | 4621  | 244  | 28  |
| 11.30 | 195     | 1072  | 1 8   | 935.3  | 8.1        | 4794  | 5103  | 245  | 23  |
| 11 50 | 215     | 1035  | 2.0   | 1019 7 | 0.1        | 4770  | 5034  | 228  | 21  |
| 12 1C | 235     | 752   | 1 0   | 890.6  | • 0        | 3755  | 3888  | 328  | 31  |
| 12.3C | 255     | 1085  | 1.0   | 923.5  | 7.7        | 4662  | 4892  | 343  | 36  |
| 12 50 | 275     | 567   | 1.7   | 772.0  | <b>●</b> 0 | 3008  | 3159  | 331  | 3 6 |
| 13 10 | 295     | 755   | 1 8   | 888.6  | 7.9        | 3695  | 3863  | 326  | 30  |
| 13:30 | 315     | 722   | 1 7   | 794 3  | 7.8        | 3778  | 4071  | 244  | 25  |
| 13 50 | 3 3 5   | 460   | 1 6   | 699.3  | 7.7        | 3298  | 3391  | 357  | 3 2 |
| 14 10 | . 355   | 357   | 1.8   | 782 1  | 7 8        | 3425  | 3577  | 357  | 41  |
| 14.30 | 375     | 562   | 1 4   | 750 0  | 7 6        | 3499  | 3588  | 330  | 3 5 |
| 14 50 | 395     | 652   | 2 1   | 842.9  | 8 1        | 4596  | 4947  | 268  | 29  |
| 15 10 | 415     | 298   | 1.5   | 763 0  | 7.7        | 3482  | 3672  | 356  | 36  |
| 15.30 | 435     | 344   | 1 3   | 883 9  | 7.4        | 3762  | 3899  | 296  | 3 2 |
| 15 50 | 455     | 9.8   | 1.1   | 614 9  | 7.0        | 1141  | 1205  | 295  | 34  |

Location ONE

Test Description: TEST SIX Date: DECEMBER 6, 1983

| AIR          | AIRI | NOI   | NO    | THC   | CO2    | CO    | 802   | lapsed     | 1     |
|--------------|------|-------|-------|-------|--------|-------|-------|------------|-------|
|              |      | (PPB) | (PPB) | (PPM) | (PPH)  | (PPM) | (PPB) | Time       | Time  |
| 771          | 621  | ****  | ****  | 6 . 2 | 761 4  | 0 . 8 | 23    | -175       | 8.15  |
| 731          | 855  |       |       | 6.0   | 634.5  | 0.7   | 27    | -155       | 8:35  |
| <b>● 2</b> : | 539  |       |       | 6.1   | 852.8  | 0.0   | 26    | -135       | 8 55  |
| 51           | 429  |       |       | 6.0   | 864 9  | 0.7   | 28    | -115       | 9 15  |
| 3 9 (        | 407  | 5     | 4     | 6 3   | 776.5  | 0.9   | 31    | <b>-95</b> | 9 35  |
| 45.          | 418  | 5     | 5     | 6 . 6 | 691.0  | 1.0   | 2 3   | -75        | 9 55  |
| 3 9          | 326  | 5     | 5     | 6.5   | 707.8  | 0 8   | 29    | - 5 5      | 10 15 |
| 5 6          | 392  | 5     | 5     | 6.5   | 764.7  | 0 6   | 2.6   | - 3 5      | 0 35  |
| 84           | 462  | 4     | 4     | 6.4   | 757.0  | 0 7   | 25    | -15        | 10.55 |
| 6.9          | 428  | 1766  | 1655  | 7.0   | 873.6  | 1 9   | 166   | 5          | 11.15 |
| 6.8          | 482  | 1949  | 1495  | 6.8   | 1008.6 | 2.4   | 230   | 2 5        | 11 35 |
| 57           | 370  | 2659  | 2400  | 7.0   | 1059.6 | 2.5   | 369   | 4.5        | 11 55 |
| 5 5          | 364  | 908   | 761   | 6.6   | 838.2  | 1 4   | 151   | 6 5        | 12:15 |
| 5 6          | 337  | 2952  | 2722  | 6.9   | 1033.8 | 2.8   | 398   | ● 5        | 12 35 |
| 58           | 418  | 2278  | 2176  | 7.0   | 928.9  | 2.8   | 437   | 105        | 12:55 |
| 4 8          | 367  | 1967  | 1660  | 6.6   | 1013.0 | 2.1   | 343   | 125        | 13 15 |
| 6 6          | 438  | 1421  | 1253  | 6 . 9 | 894.6  | 1 9   | 261   | 145        | 13 35 |
| 4.5          | 268  | 2380  | 2098  | 7.0   | 1011 1 | 2.5   | 437   | 165        | 3 55  |
| 47           | 240  | 3890  | 3313  | 7.2   | 1083.9 | 3.1   | 630   | 185        | 14.15 |
| 41           | 230  | 4976  | 4658  | 7.4   | 1199.7 | 3.7   | 937   | 205        | 14 35 |
| 37           | 255  | 3327  | 2963  | 7.4   | 1119.4 | 3.0   | 565   | 225        | 14 55 |
| 4 2          | 223  | 1503  | 1763  | 7.2   | 922.1  | 2.4   | 342   | 245        | 15 15 |
| 36           | 182  | 1669  | 1319  | 7.1   | 906.2  | 2 2   | 277   | 265        | 15.35 |
| 26           | 119  | 2025  | 2310  | 7 5   | 919.1  | 2.6   | 357   | 285        | 15.55 |
| 2 5          | 167  | 3335  | 2576  | 7.8   | 954 3  | 3.3   | 503   | 305        | 16 15 |
| 17           | 178  | 1347  | 1187  | 7.5   | 908.0  | 2.1   | 186   | 3 2 5      | 16:35 |
| 2.1          | 168  | 1260  | 1010  | 7.5   | 841.4  | 2.0   | 189   | 345        | 16 55 |
| 24           | 226  | 514   | 462   | 7 . 5 | 742.3  | 1.6   | 9.0   | 365        | 17 15 |
| 2 2          | 167  | 622   | 513   | 7.5   | 828.1  | 1.4   | 93    | 365        | 17:35 |
| 21           | 186  | 546   | 473   | 7 6   | 831.3  | 1.2   | 97    | 405        | 17.55 |
| 18           | 182  | 3949  | 2910  | 7.5   | 1047.0 | 2 . 6 | 661   | 425        | 18:15 |
| 19           | 168  | 247   | 224   | 7.6   | 785.3  | 0.9   | 77    | 445        | 8:35  |

Location TWO
Test Description TEST SIX
Date: DECEMBER 6. 1983

| AIR2        | A1 N 1 | MOX   | NO        | THC   | COZ    | CO    | \$02  | Liapsed |      |     |
|-------------|--------|-------|-----------|-------|--------|-------|-------|---------|------|-----|
|             |        | (PPB) | (PFB)     | (PPM) | (PPH)  | (PPH) | (PPB) | Time    | 100  | 71  |
| 1676        | 2028   | 1     | 2         | 6 )   | 740 2  | 0 9   | 20    | -190    | 00   |     |
| 806         | 683    |       |           | 6.1   | 749 8  | 0 7   | 22    | -170    | 20   | •   |
| 668         | 364    |       |           | 6.1   | 662 6  | 0 8   | 19    | -150    | 40   |     |
| 537         | 397    |       | ****      | 5 3   | 793.0  | D 8   | 25    | -130    | 00   | •   |
| 426         | 416    | 5     | 3         | 6 0   | 704 0  | 0 9   | 24    | -110    | 2 C  | •   |
| 451         | 427    | 5     | 3         | 6 )   | 756 0  | 0 6   | 26    | - 9 D   | 4 0  | •   |
| 445         | 400    | 7     | 5         | 6 7   | 673.1  | 1 5   | 2 5   | -70     | 00   | 10  |
| 444         | 409    | 7     | 4         | 8.4   | 734 8  | 0 8   | 24    | -50     | 20   | 10  |
| 8 5 0       | 453    | 4     | 4         | 6.5   | 780.5  | 0 7   | 25    | - 3 C   | 40   | 10  |
| 6 5 5       | 493    | 4     | 4         | 6.3   | 687.6  | 0 6   | 28    | -10     | 00   | 11  |
| 537         | 352    | 3707  | 2949      | 7 3   | 1010.5 | 2 7   | 370   | 10      | 20   | 11  |
| 584         | 434    | 2158  | 1706      | 6.8   | 1028 4 | 2.4   | 243   | 30      | 40   | 11  |
| <b>63</b> 3 | 406    | 5500  | 5303      | 7.5   | 1242.0 | 4.4   | 1125  | 5 0     | 90   | 12  |
| 507         | 310    | 5998  | 3753      | 7.4   | 1395.6 | 4.4   | 1123  | 70      | 20   | 1:  |
| 535         | 364    | 8054  | \$ 2 \$ 5 | 7.1   | 1335.5 | 4 9   | 944   | 9 0     | 4 D  | 12  |
| 556         | 400    | 4515  | 2590      | 7 1   | 1102.0 | 3 1   | 653   | 110     | 00   | 13  |
| 640         | 411    | 2306  | 1919      | 5.8   | 940.1  | 2 3   | 419   | 130     | 20   | 13  |
| 618         | 415    | 2389  | 1997      | 6.9   | 968.6  | 2 3   | 447   | 150     | 40   | 13  |
| 386         | 192    | 4733  | 3955      | 7 4   | 3199.8 | 3 8   | 753   | 170     | 00   | 14  |
| 443         | 257    | 2949  | 2872      | 6.1   | 1081 4 | 2 8   | 389   | 190     | . 20 | 14. |
| 407         | 241    | 3330  | 3211      | 7 1   | 1154 1 | 2 8   | 492   | 210     | 40   | 14  |
| 287         | 136    | 1605  | 1460      | 7 0   | 887 2  | 2 . 1 | 150   | 230     | 0.0  | 15  |
| 416         | 205    | 878   | 769       | 6 9   | 775 2  | 1 9   | 97    | 250     | 2 C  | 15  |
| 365         | 175    | 941   | 843       | 7.2   | 933 9  | 1.7   | 9.0   | 270     | 40   | 15  |
| 300         | 156    | 1167  | 1091      | 7.2   | 843.8  | 2 1   | 84    | 290     | 0.0  | 16  |
| 338         | 216    | 1573  | 1471      | 7.5   |        | 2 6   | 103   | 310     | 20   | 16  |
| 194         | 155    | 994   | 943       | 7.4   | 825 9  | 2 3   | 9.7   | 330     | 40   | 15  |
| 220         | 169    | 833   | 768       | 7.1   | 806 0  | 1.3   | 73    | 350     | 00   | 17  |
| 201         | 198    | 656   | 586       | 7 4   | 841.5  | 2 6   | 73    | 370     | 7.0  |     |
| 237         | 175    | 514   | 458       | 7.5   | 786.7  | 1.5   | 54    | 390     | 40   | 17  |
| 239         | 215    | 477   | 441       | 7.5   | 797.6  | 1.4   | 5.6   | 410     | : 00 | 18: |
| 201         | 202    | 1009  | 951       | 7 7   | 810 5  | 1.4   | 84    | 430     | . 20 | 18. |
| 381         | 191    | 222   | 200       | 7 4   | 786 5  | 1 3   | 5 9   | 450     | : 40 | 18  |

Location THREE

Test Description TEST SIX Date: DECEMBER 6, 1883

| AIR        | AIRl | NOI   | NO    | THC   | COZ    | CO    | 802   | Elapsed | 1     |
|------------|------|-------|-------|-------|--------|-------|-------|---------|-------|
|            |      | (PPB) | (PPB) | (PPM) | (PPH)  | (PPH) | (PPB) | Time    | Time  |
| 218        | 2257 | ***   |       | 6 3   | 789.6  | 0.8   | 2.5   | -185    | • D5  |
| 79         | 883  |       | ***   | 6.0   | 760.4  | 1.0   | 2.1   | -165    | 8.25  |
| ● 0        | 702  |       |       | 6 1   | 669.6  | 0.8   | 2 2   | -145    | 8 45  |
| 37         | 394  | ***   | ***   | 6.3   | 772 3  | 1.0   | 24    | - 125   | 9:05  |
| 4 2        | 415  | 6     | 5     | 6 . 2 | 741.6  | 0 9   | 2.8   | - 105   | 25    |
| 44         | 464  | 5     | 6     | 6 5   | 777.5  | 0.9   | 3 1   | - 6 5   | 9:45  |
| 41         | 424  | 5     | 5     | 6 5   | 762.2  | 1 0   | 30    | - 6 5   | 0 05  |
| 4 0        | 368  | •     | 6     | 6 7   | 720.3  | 0 8   | 2.5   | -45     | 0 25  |
| 6 6        | 462  | 5     | 5     | 5.4   | 751.9  | 0 . 8 | 20    | - 2 5   | 0 45  |
| 6 1        | 450  | 7     | 6     | 6.6   | 748.0  | 0 8   | 2 2   | - 5     | 1 05  |
| 5 2        | 405  | 178   | 165   | 6 8   | 821.4  | 0.7   | 28    | 15      | 11 25 |
| 57         | 400  | 567   | 530   | 6.8   | 907.6  | 1.2   | 3 0   | 3 5     | 1 45  |
| 5 5        | 372  | 1058  | 965   | 6.9   | 880 7  | 1.2   | 30    | 5 5     | 2 05  |
| 5 0        | 343  | 1044  | 951   | 6.7   | 752 8  | 1.5   | 37    | 7 5     | 2 25  |
| 5 5        | 368  | 1808  | 1512  | 7.1   | 832 7  | 1 8   | 5 2   | ₽5      | 2 45  |
| 5 9        | 431  | 1116  | 990   | 6 8   | 780 3  | 1.3   | 3 0   | 115     | 3 0 5 |
| <b>6</b> 2 | 193  | 324   | 280   | 6 . B | 785.4  | 1 1   | 3 6   | 135     | 3 25  |
| 5 6        | 388  | 1649  | 1394  | 7 1   | 891.6  | 1 4   | ● 8   | 155     | 3 45  |
| 47         | 244  | 3954  | 3525  | 7 6   | 1001.5 | 2.2   | 212   | 175     | 4 05  |
| 44         | 217  | 4968  | 5975  | 7.7   | 1006.7 | 2 7   | 415   | 195     | 4 25  |
| 4 9        | 271  | 6295  | 5359  | 8 0   | 1019 2 | 3 3   | 507   | 215     | 4 45  |
| 3 2        | 180  | 3415  | 3252  | 7 7   | 1097 8 | 2 4   | 307   | 235     | 5 0 5 |
| 36         | 199  | 2440  | 1919  | 7.4   | 984 9  | 1.9   | 190   | 255     | 5 25  |
| 3 1        | 173  | 3693  | 3218  | 7.9   | 958.1  | 2 . 6 | 332   | 275     | 5 45  |
| 27         | 153  | 5452  | 4759  | 8.0   | 994 5  | 3 0   | 464   | 295     | 6 05  |
| 3 2        | 206  | 3761  | 3190  | 7 8   | 892.3  | 2 2   | 339   | 315     | 6 25  |
| 2 (        | 198  | 4744  | 4230  | 8.0   | 929 8  | 2 6   | 433   | 335     | 8 45  |
| 2 2        | 212  | 3366  | 2265  | 8 0   | 1001.1 | 2.2   | 274   | 355     | 7 05  |
| 2 1        | 202  | 2708  | 2317  | 7.1   | 922.9  | 2 3   | 265   | 375     | 7 25  |
| 24         | 214  | 3078  | 2201  | 8 0   | 980.1  | 2.3   | 204   | 395     | 7 45  |
| 19         | 159  | 3883  | 3414  | 0.3   | 186.1  | 2 4   | 374   | 415     | 8 05  |
| 2 4        | 205  | 3651  | 2705  | 8.3   | 954.2  | 2.7   | 348   | 435     | 8 25  |
| 11         | 150  | 3448  | 2989  | 8 4   | 991.4  | 2 5   | 374   | 455     | 8.45  |

Lecation: FOUR

Test Description: TEST SIX Date: DECEMBER 6, 1983

| 1    | Blapsed    | 302   | CO    | CO2    | THC   | NO    | NOI   | AIR1 | AIR |
|------|------------|-------|-------|--------|-------|-------|-------|------|-----|
| Time | Time       | (PPB) | (PPH) | (PPH)  | (PPH) | (PPB) | (PPB) |      |     |
| 8:10 | -180       | 20    | 0.9   | 701.1  | 8.3   | ****  | ***   | 1126 | 167 |
| 8.30 | -160       | 24    | 0.0   | 667.9  | 6.3   |       |       | 633  | 77  |
| 8:50 | -140       | 30    | 1.0   | 721.4  | 6 . Z |       | ****  | 738  | 92  |
| 9:10 | -120       | 27    | 1.3   | 873 5  | 5.3   |       |       | 466  | 43  |
| 9 30 | -100       | 28    | 0.8   | 762 9  | 6.4   | 5     | 7     | 443  | 46  |
| 9:50 | -80        | 37    | 0.9   | 923 4  | 6.6   |       | 7     | 457  | 43  |
| 0 10 | -60        | 32    | 0.8   | 774.8  | 6.5   | 7     |       | 413  | 44  |
| 0.30 | -40        | 30    | 0 8   | 733.1  | 6.6   | •     | 7     | 423  | 5 5 |
| 0 50 | -20        | 28    | 0.0   | 774.6  | 6.4   | 6     | 7     | 516  | 67  |
| 1 10 | 0          | 31    | 0.0   | 813.1  | 6.6   | 21    | 16    | 482  | 70  |
| 1:30 | 2 0        | 2.9   | 1.0   | 783.3  | 5.5   | 139   | 155   | 382  | 59  |
| 1:50 | <b>4</b> D | 29    | 1.2   | 819.9  | 6.7   | 499   | 546   | 306  | 5 5 |
| 2:10 | 6 0        | 34    | 1.6   | 765.2  | 6 . 6 | 1061  | 1198  | 423  | 6 0 |
| 2:30 | ● 0        | 41    | 1.5   | 890.7  | 6.7   | 1246  | 1370  | 362  | 5 0 |
| 2 50 | 100        | 45    | 1.2   | 875.4  | 6 . 6 | 756   | 876   | 394  | 57  |
| 3.10 | 120        | 54    | 1.4   | 799.3  | 6 9   | 993   | 1129  | 374  | 5 9 |
| 3.30 | 140        | 4.3   | 1.0   | 786.3  | 6.9   | 584   | 674   | 394  | 67  |
| 3:50 | 160        | 63    | 17    | 844.0  | 7.2   | 1478  | 1559  | 385  | 5 8 |
| 4 10 | 190        | 98    | 1.9   | 777.6  | 7.2   | 2446  | 2678  | 274  | 4 6 |
| 4 30 | 200        | 111   | 1.7   | 908.8  | 7 3   | 2258  | 2524  | 294  | 4 8 |
| 4 50 | 2 2 C      | 125   | 2 2   | 934 9  | 7.3   | 2532  | 2782  | 256  | 5 0 |
| 5 10 | 240        | 111   | 1.9   | 996 0  | 7 3   | 1620  | 1857  | 177  | 3 2 |
| 5 30 | 260        | 91    | 1.7   | 877.3  | 7.2   | 1376  | 1574  | 213  | 3 6 |
| 5 50 | 280        | 113   | 2 . 2 | 857.6  | 7.7   | 1706  | 1946  | 111  | 2 6 |
| 6 10 | 300        | 207   | 2 2   | 997.7  | 7.7   | 3186  | 3547  | 164  | 26  |
| 6 30 | 320        | 317   | 2 4   | 909.4  | 8 . D | 3591  | 4090  | 175  | 16  |
| 6 50 | 340        | 470   | 3.1   | 958.1  | 8.5   | 4610  | 6070  | 146  | 18  |
| 7 10 | 360        | 219   | 2.0   | 946.1  | 7.8   | 1960  | 2245  | 237  | 23  |
| 7:30 | 380        | 162   | 1.7   | 866.4  | 8.1   | 1497  | 1595  | 194  | 2.7 |
| 7.50 | 400        | 329   | 2.5   | 863 6  | 8.3   | 2775  | 3246  | 209  | 24  |
| 0:1G | 420        | 345   | 2.4   | 1010.8 | 8.5   | 2000  | 4147  | 170  | 2 ( |
| 8:30 | 440        | 270   | 2.2   | 937 8  | 0 2   | 2440  | 2571  | 193  | 2 3 |
| . 50 | 460        | 53    | 0.7   | 488.6  | 3.4   | 3     | 3     | 292  | 16  |

Location ONE

Test Description TEST SEVEN Date: DECEMBER 7, 1963

| AI | AIRI | NOI   | NO    | THC   | CO2    | CO    | <b>5</b> 02 | lapsed | 3   |
|----|------|-------|-------|-------|--------|-------|-------------|--------|-----|
|    |      | (PPB) | (PPB) | (PPH) | (PH)   | (PPM) | (PPB)       | Time   | De. |
| 2  | 256  | 51    | 41    | 6 4   | 710 6  | 0 9   | 3 6         | 5      | 16  |
| 2  | 232  | 6 2   | 5 0   |       | 738 8  | 1 0   | 31          | 2.5    | 30  |
| 1  | 237  | 208   | 178   | 6 1   | 774.8  | 1 3   | 39          | 4.5    | 50  |
| 1  | 223  | 5 5   | 4.6   | 7.6   | 692.4  | 1 0   | 3 6         | 6.5    | 10  |
| 1  | 233  | 163   | 138   | 7.4   | 738 1  | 1.3   | 3 6         | 8 5    | 30  |
| 2  | 235  | 127   | 108   | 7 3   | 721 8  | 1 2   | 4 D         | 105    | 50  |
| 1  | 205  | 228   | 152   | 10 3  | 755 3  | 1 5   | 41          | 125    | 10  |
| 1  | 151  | 315   | 249   | 7.3   | 659.4  | 1 4   | 4.5         | 145    | 30  |
| 7  | 226  | 998   | 1203  | 7 3   | 721.7  | 17    | 105         | 165    | 5 C |
| 1  | 212  | 2233  | 946   | 7 . 5 | 737.3  | 2 3   | 184         | 105    | 10  |
| 7  | 223  | 2526  | 2235  | 7 4   | 822.5  | 2 4   | 212         | 205    | 30  |
| 1  | 205  | 2778  | 2221  | 7.4   | 859.8  | 2 9   | 3 2 5       | 225    | 5 0 |
| 1  | 210  | 2946  | 2799  | 7 4   | 803 B  | 2 8   | 339         | 245    | 16  |
| 1  | 209  | 3601  | 3455  | 7.7   | 929 7  | 3.3   | 432         | 265    | 36  |
| 1  | 169  | 3519  | 3522  | 8 . 2 | 820.2  | 3.2   | 432         | 285    | 5 ü |
| 1  | 158  | 4879  | 4162  | 8 6   | 973.8  | 3 6   | 558         | 305    | 10  |
| 1  | 131  | 4207  | 3550  | 8.6   | 879 7  | 3 0   | 487         | 3 2 5  | 3 ū |
| 1  | 171  | 0861  | 8669  | 14.8  | 1349.4 | 19 5  | 1974        | 345    | 5 ĉ |
| 1  | 197  | 4931  | 4103  | 9.8   | 891.3  | 4 5   | 572         | 365    | 16  |
|    | 174  | 3113  | 2728  | 9.2   | 769 1  | 2 8   | 399         | 385    | 30  |
| 1  | 154  | 3455  | 2764  | 10.0  | 929 2  | 3 . 8 | 512         | 405    | 5 ū |
| 1  | 130  | 2349  | 2072  | 8.9   | 714.9  | 2 4   | 352         | 415    | 10  |
| :  | 130  | 4120  | 3357  |       | 798.7  | 3 4   | 449         | 445    | 3 0 |
| 1  | 159  | 3277  | 2658  |       | 676 B  | 3.3   | 402         | 465    | 50  |
| 1  | 151  | 3619  | 2772  |       | 769 6  | 3 6   | 435         | 485    | 10  |
| 1  | 147  | 4210  | 3601  | 9.2   | 709.3  | 3 7   | 471         | 500    | 25  |
| :  | 153  | 4445  | 3813  | € . 5 | 845.0  | 4 . G | 577         | 5 2 0  | 45  |

Location: TWO
Test Description: TEST SEVEN
Date: DECEMBER 7: 1983

|             | Elapsed | 502   | CO    | COZ    | THC   | NO    | NOI   | AIRI | AIR |
|-------------|---------|-------|-------|--------|-------|-------|-------|------|-----|
| Time        | Time    | (PPB) | (PPM) | (PPH)  | (PPH) | (PPB) | (PPB) |      |     |
| 7:55        | -16     | 27    | 1 0   | 716.0  | 6.2   | 14    | 13    | 271  | 20  |
| 6 15        | 10      | 30    | 0 1   | 720.3  | 6.1   | 140   | 138   | 246  | 24  |
| <b>8</b> 35 | 3 G     | 3 3   | 1.0   | 695.0  | 8.9   | 248   | 269   | 250  | 20  |
| 8:55        | 5 0     | 3 2   | 1 2   | 729.3  | 8.3   | 164   | 176   | 225  | 17  |
| 9 15        | 70      | 3 3   | 1.2   | 748.2  | 8 0   | 67    | 6.6   | 231  | 20  |
| 9.35        | 9.0     | 3.4   | 1.5   | 773.7  | 7.8   | 156   | 177   | 216  | 19  |
| 9 55        | 110     | 3 3   | 1 9   | 768 3  | 7.5   | 166   | 185   | 254  | 2.1 |
| 15 15       | 130     | 4 3   | 1.5   | 774.3  | 9 3   | 238   | 264   | 218  | 18  |
| 10 35       | 150     | 3 6   | 1 i   | 657.5  | 7.3   | 272   | 332   | 190  | 17  |
| 10 55       | 170     | 36    | 1.4   | 745.1  | 7.0   | 303   | 349   | 221  | 2.1 |
| 11 15       | 190     | 48    | 1.1   | 765.3  | 7.1   | 276   | 311   | 226  | 2 1 |
| 1 35        | 210     | 4 9   | 1 5   | 666 6  | 6.9   | 515   | 387   | 227  | 2 0 |
| 1 55        | 230     | 5 8   | 1.6   | 725 3  | 6.8   | 458   | 527   | 200  | 16  |
| 12-15       | 250     | 5 6   | 1.4   | 720.6  | 6 8   | 482   | 566   | 107  | 11  |
| 12 35       | 270     | 7 2   | 1.6   | 687.4  | 7.0   | 512   | 585   | 162  | 16  |
| 2 55        | 290     | 9 6   | 1 6   | 629 2  | 7.3   | 781   | 1043  | 262  | 2 5 |
| 13:15       | 315     | 298   | 2 3   | 739.4  | 8 Z   | 3954  | 3370  | 119  | 17  |
| 3 35        | 330     | 262   | 2.5   | 741.4  | 8.6   | 1533  | 1773  | 143  | 17  |
| 13 50       | 350     | 1415  | 21.4  | 1268.8 | 15 4  | 7983  | 8861  | 174  | 18  |
| 4 15        | 370     | 557   | 3.9   | 875.4  | 10.1  | 3694  | 5483  | 181  | 16  |
| 4 35        | 350     | 714   | 4 7   | 990.3  | 10 7  | 5390  | 5532  | 128  | 17  |
| 4 55        | 410     | 6 6 5 | 4.1   | 884.8  | 10 4  | 5299  | 5402  | 149  | 16  |
| 15 15       | 430     | 355   | 2.1   | 662.4  |       | 1983  | 2165  | 151  | 14  |
| 5 35        | 450     | 531   | 3 4   | 744.2  | ****  | 3520  | 4068  | 149  | 13  |
| 15 55       | 476     | 563   | 3 2   | 745.8  | ****  | 3201  | 4260  | 159  | 16  |
| 16 15       | 490     | 571   | 3.8   | 872 9  | ***   | 3573  | 5135  | 157  | 17  |
| 6 30        | 505     | 590   | 3 8   | 859.0  | 9.0   | 3923  | 4902  | 137  | 14  |
| 16 5C       | 525     | 566   | 3 6   | 824.8  |       | 4047  | 4584  | 137  | 14  |

Location THREE

Test Description: TEST SEVEN

Date: DECEMBER 7. 1883

| 1           | Elapsed | 802   | CO    | CO2    | THC   | NO    | NOI   | AIRI | AIR |
|-------------|---------|-------|-------|--------|-------|-------|-------|------|-----|
| Time        | Time    | (PPB) | (PPH) | (PPM)  | (PPH) | (PPB) | (PPB) |      |     |
| . 00        | -5      | 46    | 0 .   | 675 3  | 6 2   | 5 8   | 74    | 264  | 20  |
| 6 20        | 15      | 546   | 2 8   | 1049.2 | 12.6  | 2637  | 3003  | 251  | 21: |
| 8 46        | 3 5     | 400   | 2 3   | \$88.3 | 14.1  | 1766  | 1990  | 239  | 20  |
| 9 0 C       | 3 5     | 531   | 2.6   | 948.1  | 13 0  | 2503  | 2770  | 233  | 19  |
| 5 2 C       | 75      | 477   | 3.1   | 1011.0 | 11.8  | 2566  | 2844  | 224  | 20  |
| 9 40        | 9.5     | 479   | 2.9   | 1021 0 | 11.9  | 2695  | 2850  | 231  | 19  |
| 0.0         | 115     | 556   | 3.0   | 1065.5 | 10.3  | 2577  | 3235  | 229  | 20  |
| 0 2 0       | 135     | 421   | 2.7   | 945 4  | 11.4  | 1698  | 1987  | 216  | 18  |
| 0 140       | 155     | 464   | 2 8   | 954.0  | 9 1   | 2022  | 2365  | 213  | 19  |
| 1 00        | 175     | 502   | 2 9   | 1033.7 | 8.7   | 2691  | 2776  | 228  | 2.0 |
| 1 20        | 195     | 727   | 4 2   | 1187.8 | 8.7   | 3586  | 4062  | 223  | 2.1 |
| 1 40        | 215     | 889   | 4.7   | 1156.4 | 8 3   | 4864  | 5450  | 234  | 2 1 |
| 2 00        | 235     | 752   | 4.3   | 1118.8 | 7.9   | 3655  | 4188  | 197  | 20  |
| 2 2 0       | 255     | 699   | 3 . 6 | 189.9  | 7.7   | 3522  | 3488  | 209  | 11  |
| 2 40        | 275     | 795   | 3 6   | 1106.6 | 7 8   | 3926  | 3815  | 166  | 16  |
| 3 60        | 295     | 601   | 3 3   | 1022 4 | 8.1   | 2932  | 3386  | 148  | 16  |
| 3 2 2       | 3 1 5   | 329   | 1.8   | 879.3  | 8 . C | 1345  | 1566  | 150  | 18  |
| 3 40        | 335     | 546   | 2.9   | 971.1  | 8 6   | 2986  | 3434  | 158  | 18  |
| 4 0 ū       | 355     | 340   | 2.5   | 815.0  | 9.7   | 1804  | 1537  | 165  | 18  |
| 4 20        | 375     | 595   | 5.5   | 1628 0 | 9.5   | 2254  | 3331  | 197  | 16  |
| 4 40        | 3 \$ 5  | 153   | 1 6   | 712 3  | 8 7   | 444   | 513   | 148  | 17  |
| 5 00        | 415     | 131   | 1.3   | 678.3  | 8.6   | 242   | 291   | 131  | 15  |
| 5 22        | 435     | 138   | 1.5   | 753.4  |       | 342   | 421   | 128  | 15  |
| 5 40        | 455     | 125   | 1 8   | 710 4  |       | 323   | 379   | 157  | 16  |
| <b>a</b> 05 | 475     | 151   | 1 6   | 661.6  |       | 335   | 375   | 151  | 17  |
| 6 20        | 485     | 140   | 2.2   | 680 5  | ***   | 586   | 628   | 160  | 16  |
| 6 35        | 510     | 108   | 2 . 8 | 661.3  | 7.\$  | 138   | 160   | 151  | 16  |
| 5 3 5       | 530     | 107   | 1 3   | 497.5  | 7.6   | 33    | 39    | 138  | 15  |

Location FOUR

Test Description: TEST SEVEN Date: DECEMBER 7, 1983

|         | Elapsed    | <b>3</b> 02 | CO    | COZ    | THC   | NO    | NOI   | AIRI | AIR |
|---------|------------|-------------|-------|--------|-------|-------|-------|------|-----|
| Time    | Time       | (PPB)       | (PPM) | (PPH)  | (PPH) | (PPB) | (PPB) |      |     |
| 8 05    | 0          | 41          | 1.4   | 769 0  | 6 7   | 650   | 687   | 271  | 22  |
| 8 25    | 20         | 478         | 2.9   | 895.5  | 10 6  | 2161  | 2070  | 244  | 2.1 |
| 6 45    | 4 0        | 633         | 2 9   | 1108 1 | 1 1   | 3056  | 2799  | 210  | 20  |
| 9 65    | <b>6</b> 0 | 525         | 3 4   | 1057 5 | 9 3   | 2319  | 2740  | 227  | 19  |
| 9 25    | 8.0        | 566         | 3 8   | 1095 8 | 9 2   | 2006  | 3715  | 230  | 19  |
| 9 45    | 100        | 687         | 5 0   | 1117 5 | 9 1   | 3157  | 3748  | 227  | 19  |
| C 05    | 120        | 3 5 4       | 2 7   | 093 5  | 8.3   | 3000  | 2093  | 227  | 16  |
| 0 25    | 140        | 318         | 2.1   | 847 6  |       | 1402  | 1482  | 166  | 16  |
| 0 45    | 160        | 271         | 2 0   | 812.6  | 7 4   | 1084  | 1252  | 224  | 2.1 |
| 1 05    | 180        | 148         | 1.6   | 826.3  | 7.4   | 616   | 1020  | 201  | 19  |
| 1:25    | 200        | 209         | 2 7   | 929.6  | 7.4   | 1572  | 1618  | 223  | 2.0 |
| 1.45    | 220        | 160         | 2 4   | 830.7  | 7.1   | 1640  | 1606  | 218  | 20  |
| Z 65    | 240        | <b>9</b> 6  | 1 7   | 819 6  | 6 6   | 556   | 608   | 216  | 11  |
| 2.25    | 260        | 8 9         | 1 6   | 907.4  | 6.8   | 576   | 640   | 203  | 11  |
| 2 45    | 280        | 71          | 1 4   | 700 7  | 7.0   | 305   | 348   | 143  | 16  |
| 3 0 5   | 300        | 67          | 1.5   | 779.3  | 7.3   | 359   | 399   | 158  | 16  |
| 3 . 2 5 | 320        | 70          | 1 5   | 751.1  | 7 6   | 305   | 332   | 132  | 15  |
| 3 45    | 340        | 8 9         | 1 8   | 794 6  | 7.9   | 652   | 692   | 161  | 1 8 |
| 4 05    | 360        | 112         | 1.3   | 825 9  | 8.7   | 537   | 573   | 164  | 16  |
| 4 25    | 380        | 176         | 4 1   | 848 5  | 9 4   | 1350  | 1577  | 190  | 10  |
| 4 45    | 460        | 121         | 2 5   | 739 4  | 8 7   | 958   | 910   | 159  | 15  |
| 5 û 5   | 410        | 9.5         | 1 4   | 725.1  | 8 4   | 438   | 455   | 131  | 16  |
| 5 25    | 440        | 107         | 2.5   | 848.5  |       | 837   | 914   | 129  | 15  |
| 5 4 5   | 460        | 93          | 2.1   | 794 4  |       | 555   | 589   | 175  | 16  |
| 6 05    | 4 8 0      | 97          | 2 1   | 693 6  |       | 624   | 852   | 142  | 16  |
| 6 40    | 515        | 8 9         | 2.3   | 679 4  | 7.5   | 407   | 421   | 151  | 15  |

Location ONE

Test Description. TEST EIGHT Date: DECEMBER 8, 1983

|         | Elapsed    | 802   | 63    | COZ    | THE   | NO    | NOI   | AIRI | AIR |
|---------|------------|-------|-------|--------|-------|-------|-------|------|-----|
| Time    | Time       | (PPB) | (PPH) | (PPH)  | (PPH) | (PPB) | (PPB) |      |     |
| 8 05    | 0          | 500   | 2 9   | 934 4  | ***   | 1463  | 1029  | 502  | 553 |
| 8:25    | 20         |       | 2.8   | 1039.5 | ***   | 2502  | 2757  | 206  | 210 |
| 8.45    | 40         | 865   | 2 1   | 822 9  | 7.4   | 1566  | 1695  | 200  | 2.1 |
| 9 05    | 60         | 1428  | 2.8   | 1154.9 | 7 8   | 3343  | 3732  | 211  | 20  |
| 9 25    | <b>8</b> D | 1738  | 2 7   | 1185 7 | 7.7   | 3573  | 4111  | 205  | 21  |
| 9 45    | 100        | 1297  | 2 7   | 1083 1 | 7.7   | 2536  | 3058  | 214  | 21  |
| 0 05    | 120        | 975   | 2.7   | 833.5  | 7.2   | 1980  | 2249  | 203  | 19  |
| 0.25    | 140        | 956   | 2 3   | 1033 3 | 7.5   | 1911  | 2274  | 212  | 19  |
| 0 45    | 160        | 560   | 2 2   | 842.5  | 7.7   | 1087  | 1321  | 219  | 22  |
| 1 05    | 180        | 953   | 2 6   | 1030.5 | 7 8   | 1977  | 2156  | 219  | 23  |
| 1 25    | 200        | 1773  | 3 1   | 1186.0 | 8 1   | 3711  | 3987  | 205  | 20  |
| 1 45    | 220        | 1739  | 3.3   | 1168 8 | 8.3   | 3105  | 3877  | 243  | 26  |
| 2 05    | 240        | 1961  | 2 8   | 1290.6 | 0.5   | 3922  | 5030  | 235  | 2 2 |
| 2 2 5   | 260        | 1510  | 2.7   | 1115.3 | 8.0   | 2615  | 2958  | 196  | 2.1 |
| 2 45    | 280        | 1518  | 2 . 8 | 1097 0 | 7.6   | 2179  | 2678  | 190  | 2.1 |
| 3 05    | 300        | 613   | 2.3   | 1050.2 | 7.6   | 1292  | 1326  | 252  | 2.5 |
| 3:25    | 320        | 815   | 2 4   | 1176 4 | 7.7   | 1540  | 1727  | 272  | 2 2 |
| 3 45    | 340        | 1702  | 3 . 4 | 1396.6 | 8.4   | 4487  | 4131  | 281  | 2 9 |
| 4 05    | 360        | 237   | 1.5   | 999.8  | 7.6   | 303   | 547   | 217  | 19  |
| 4:25    | 380        | 133   | 1.0   | 940.5  | 7.4   | 187   | 222   | 183  | 17  |
| 4:45    | 400        | 163   | 1.4   | 1008.0 | 7.3   | 377   | 452   | 195  | 16  |
| 5 0 5   | 420        | 417   | 1 8   | 1095.8 | 7.3   | ,,,   | 1178  | 186  | 16  |
| 5 25    | 440        | 114   | 1.3   | 942.6  | 7.1   | 173   | 190   | 207  | 15  |
| 5 . 4 5 | 460        | 348   | 2.0   | 1143.5 | 7.5   | 575   | 585   | 190  | 16  |
| 6 05    | 4 6 0      | 117   | 1.2   | 1017.0 | 7 5   | 101   | 120   | 228  | 2 0 |
| 6 25    | 500        | 105   | 1.2   | 1100.4 | 7.7   | 80    | 9.5   | 202  | 17  |
| 6.45    | 5 2 G      | ***   |       | ****   |       |       | ****  | **** |     |

Location TWO

Test Description: TEST EIGHT Date: DECEMBER 8, 1983

|        | Elapsed | 502        | CO    | COZ    | THC   | NO    | NOI   | AIRI | AIRZ |
|--------|---------|------------|-------|--------|-------|-------|-------|------|------|
| Time   | Time    | (PPB)      | (PPH) | (PPH)  | (PPH) | (PPB) | (PPB) |      |      |
| 8 - 10 | 5       | 645        | 2.4   | 878 7  | ****  | 2042  | 2254  | 513  | 550  |
| 8:30   | 2 5     | 1169       | 4 3   | 956.0  | 9.0   | 2354  | 2987  | 358  | 230  |
| 8 50   | 4.5     | 1033       | 2 7   | 1033.2 | 7.7   | 2227  | 2521  | 225  | 22   |
| 9 10   | 6.5     | 1994       | 3 0   | 1316.1 | 0 5   | 5374  | 5613  | 222  | 214  |
| 9 30   | 8.5     | 1731       | 3.2   | 1234.3 | 7 9   | 3826  | 4210  | 216  | 20   |
| 9 50   | 105     | 1994       | 3 4   | 1421.3 | 0.6   | 5700  | 7006  | 200  | 199  |
| 0.10   | 125     | 971        | 3.0   | 1074.1 | 7.4   | 1890  | 2341  | 203  | 20   |
| 0 30   | 145     | 1326       | 2.7   | 1026 0 | 7.4   | 2863  | 3153  | 214  | 21   |
| 0.50   | 165     | 558        | 2.0   | 1017.8 | 7.\$  | 994   | 1302  | 239  | 23   |
| 1.10   | 185     | 049        | 2.4   | 1030.5 | 7.8   | 1756  | 1686  | 236  | 22   |
| 1 - 30 | 205     | 1592       | 3 . 8 | 1221.0 | 8.4   | 3959  | 4514  | 220  | 2 G  |
| 1 50   | 225     | 112        | 1.6   | 078.1  | 7.8   | 272   | 301   | 258  | 24   |
| Z - 10 | 245     | 1074       | 3 . 5 | 1194.1 | 8 . 4 | 3189  | 3667  | 198  | 20   |
| 2.30   | 265     | 86         | 1 4   | 867.6  | 7 5   | 270   | 298   | 175  | 20   |
| 2 50   | 205     | 112        | 1.4   | 935.9  | 7 3   | 421   | 472   | 229  | 23   |
| 3 10   | 305     | 78         | 1.2   | 943.0  | 7 3   | 219   | 242   | 282  | 36   |
| 3.30   | 325     | 918        | 2.7   | 998.1  | 7.7   | 1539  | 1596  | 269  | 2 2  |
| 3.50   | 345     | 258        | 2.3   | 1094 4 | 7.6   | 1193  | 1251  | 256  | 24   |
| 4 10   | 365     | 8 2        | 1.1   | 942 0  | 7 3   | 269   | 287   | 209  | 17   |
| 4:30   | 385     | 6 4        | 1.2   | 846.4  | 7.2   | 179   | 195   | 195  | 2.1  |
| 4 50   | 405     | 117        | 1.3   | 1047.4 | 7.1   | 413   | 443   | 228  | 18   |
| 5 10   | 425     | 103        | 1.6   | 1041.7 | 7.0   | 611   | 646   | 169  | 14   |
| 5 36   | 445     | 76         | 1.1   | 866 2  | 7.3   | 209   | 218   | 216  | 17   |
| 5 50   | 465     | <b>9</b> 2 | 1 5   | 1013.7 | 7.4   | 240   | 255   | 189  | 17   |
| 6 10   | 485     | 80         | 1.2   | 1039.5 | 7.4   | 141   | 154   | 243  | 21   |
| 6 30   | 505     | 67         | 1.0   | 741.0  | 3.5   | 3     | 2     | 104  | 16   |

Location THREE

Test Description TEST EIGHT Date: DECEMBER 8, 1983

| 1     | Elapsed | 502   | CO    | COZ    | THC   | NO    | NOZ     | AIRI | AIR |
|-------|---------|-------|-------|--------|-------|-------|---------|------|-----|
| Time  | Time    | (PPB) | (PPH) | (PPM)  | (PPM) | (PPB) | (PPB)   |      |     |
| 7.55  | -10     | 26    | 0.8   | 830.0  | 0.6   | 5     | ,       | 472  | 567 |
| 8 15  | 10      | 42    | 0.9   | 755.5  |       | 7     | 21      | 311  | 371 |
| 0:35  | 30      | 4.5   | 1.2   | 789 1  | 6.7   | 35    | 44      | 174  | 226 |
| 8 55  | 5 0     | 47    | 1.2   | 751 4  | 7.2   | 6.3   | 73      | 222  | 21  |
| 9 15  | 70      | 49    | 1.3   | 752.8  | 7.5   | 35    | 41      | 222  | 21: |
| 9 35  | ● 0     | 4 8   | 1.2   | 741.2  | 7.1   | 149   | 173     | 216  | 21  |
| 9 55  | 110     | 5 4   | 1 3   | 769.3  | 7 2   | 254   | 311     | 204  | 20  |
| 0 15  | 130     | 4 8   | 1.4   | 790.4  | 6.9   | 154   | 197     | 191  | 20  |
| C 35  | 15G     | 48    | 1 2   | 797 6  | 7.3   | 157   | 234     | 248  | 23  |
| 0 55  | 170     | 51    | 1.3   | 838.9  | 7.7   | 225   | 285     | 225  | 23  |
| 1 15  | 190     | 232   | 2.5   | 1038 3 | 8.4   | 2759  | 2943    | 234  | 21  |
| 1.35  | 210     | 260   | 2 3   | 1061 5 | B . 5 | 1783  | 2474    | 244  | 22  |
| 1 55  | 230     | 390   | 2.9   | 992 5  | 0 6   | 2501  | 3452    | 236  | 24  |
| 2 15  | 250     | 368   | 3.1   | 1134.8 | 8.7   | 2468  | 3331    | 200  | 20  |
| 2.35  | 276     | 391   | 2 3   | 1069.9 | 8 7   | 2678  | 3754    | 203  | 21  |
| 2:55  | 290     | 532   | 3.5   | 1071 5 | 8.7   | 3250  | 4368    | 224  | 21  |
| 3 15  | 310     | 472   | 3 0   | 988.5  | 8 3   | 3064  | 3784    | 513  | 28  |
| 3 35  | 330     | 447   | 3 1   | 1110.8 | 8.2   | 2981  | 3461    | 260  | 22  |
| 3 55  | 350     | 442   | 3 . 2 | 1100 1 | 8.4   | 2836  | 3815    | 268  | 23  |
| 4.15  | 370     | 561   | 3 0   | 1157.1 | 8.6   | 3421  | 4251    | 202  | 17  |
| 4 35  | 390     | 467   | 3 1   | 1162 1 | 8 3   | 3397  | 3 8 3 6 | 198  | 20  |
| 4 55  | 410     | 456   | 3 1   | 1145.0 | 8.0   | 3056  | 3768    | 213  | 18  |
| 5 15  | 430     | 449   | 3 0   | 1209 5 | 8.1   | 2737  | 3508    | 197  | 14  |
| 5 35  | 450     | 368   | 2 9   | 1229.8 | 8.2   | 2503  | 2948    | 239  | 19  |
| 5 5 5 | 470     | 368   | 3.9   | 1332.7 | 8.5   | 4113  | 4806    | 198  | 16  |
| 6 15  | 490     | 640   | 4.0   | 1312.9 | 1.9   | 4597  | 5379    | 236  | 2.1 |
| i 35  | 510     | 60    | 0 7   | 853.8  | 0 7   | 4     | 2       | 205  | 18  |

Location FOUR

Test Description: TEST EIGHT Date: DECEMBER 8, 1983

|         | Elapsed | 302   | CO    | COZ    | THC                 | NO    | NOI   | AIRI | AIR |
|---------|---------|-------|-------|--------|---------------------|-------|-------|------|-----|
| Time    | Time    | (PPB) | (PPH) | (PPH)  | (PPH)               | (PPB) | (PPB) |      |     |
| 8.00    | -5      | 34    | 0     | 780.4  | ***                 | 12    | •     | 418  | 541 |
| 8 20    | 15      | 37    | 1.0   | 769.4  |                     | 20    | 16    | 203  | 24  |
| 8:40    | 3 5     | 3 3   | 1.2   | 882.8  | <b>5</b> . <b>9</b> | 134   | 139   | 169  | 22  |
| 9 : D O | 5 5     | 37    | 1.4   | 844.5  | 7 4                 | 229   | 249   | 207  | 20  |
| 6 Z D   | 75      | 3 9   | 1.3   | 831.4  | 7 4                 | 6.8   | 73    | 207  | 20  |
| 9 40    | 9.5     | 46    | 1.3   | 887.3  | 7.2                 | 199   | 227   | 214  | 201 |
| 0.00    | 115     | 42    | 1 2   | 801.6  | 6.9                 | 224   | 250   | 193  | 20  |
| C 20    | 135     | 4 3   | 1.5   | 814 9  | 6 9                 | 161   | 184   | 199  | 19  |
| 0 40    | 155     | 43    | 1.4   | 814.7  | 7.4                 | 164   | 191   | 237  | 22  |
| 1.00    | 175     | 48    | 1 . 3 | 910.7  | 7.6                 | 254   | 290   | 253  | 25  |
| 1 - 20  | 195     | 51    | 1.4   | 932.3  | 7.8                 | 289   | 338   | 204  | 19  |
| 1:40    | 215     | 67    | 1.1   | 918.1  | 7.6                 | 100   | 230   | 232  | 2 1 |
| 2 00    | 235     | 5 5   | 1 3   | 878.0  | 7.7                 | 199   | 248   | 238  | 21  |
| 2.20    | 255     | 5 6   | 1 2   | 891.4  | 7.7                 | 240   | 205   | 174  | 20  |
| 2 40    | 275     | 76    | 1.4   | 944.B  | 7 . 5               | 352   | 6 4 B | 184  | 19  |
| 3 00    | 295     | 76    | 1.4   | 1042.9 | 7.5                 | 492   | 596   | 247  | 24  |
| 3 2 0   | 315     | 161   | 1.7   | 968.5  | 7.5                 | 826   | 739   | 255  | 29  |
| 3 40    | 335     | 295   | 2 7   | 1141.7 | 8.3                 | 1925  | 3315  | 295  | 27  |
| 4 00    | 355     | 234   | 2 3   | 1009.8 | 7.9                 | 1675  | 1894  | 245  | 24  |
| 4 20    | 375     | 543   | 3.7   | 1124 3 | 9.0                 | 4203  | 5091  | 167  | 17  |
| 4 45    | 395     | 554   | 3.4   | 1249.5 | 8 7                 | 3924  | 4730  | 186  | 17  |
| 5 0 C   | 415     | 444   | 2 8   | 1167.3 | 8.1                 | 2979  | 3462  | 205  | 19  |
| 5 23    | 435     | 468   | 3 2   | 1194.5 | 8 3                 | 2702  | 4100  | 220  | 19  |
| 5 40    | 455     | 352   | 3.0   | 1284 8 | 8 3                 | 2161  | 2827  | 223  | 16  |
| 6 0 0   | 475     | 420   | 2 7   | 1203.6 | 6 . 6               | 3101  | 3635  | 188  | 17  |
| 6 20    | 435     | 414   | 3.3   | 1314 1 | <b>0</b> . 5        | 2621  | 2916  | 213  | 19  |
| 6 40    | 515     | 8.5   | 2 1   | 1110 9 | 7.7                 | 719   | 873   | 283  | 18  |

Lecation ONE
Test Description TEST NINE
Date DECEMBER 9, 1983

|        | Elapsed | 802   | CO    | COS    | THC   | NO    | NOI   | AIRI | AIR2 |
|--------|---------|-------|-------|--------|-------|-------|-------|------|------|
| Time   | Time    | (PPB) | (PPH) | (PPH)  | (PPH) | (PPB) | (PPB) |      |      |
| 8.00   | -10     | 20    | 1.2   | 814.0  | 7.4   | 8     | 7     | 400  | 33(  |
| 8.20   | 10      | 30    | 1.2   | 774.1  | 6.7   | 217   | 216   | 288  | 203  |
| 8 40   | 30      | 702   | 1.0   | 1133.6 | 6 9   | 4374  | 4932  | 298  | 243  |
| 9:00   | 5 0     | 643   | 2.0   | 1009.1 | 7.0   | 4387  | 4667  | 269  | 21:  |
| 9.20   | 70      | 126   | 1.5   | 973.1  | 6 8   | 1920  | 2017  | 341  | 290  |
| 9:40   | 9 0     | 206   | 1 4   | 928.9  | 6 7   | 1333  | 1413  | 436  | 37   |
| 3 O C  | 110     | 204   | 1.3   | 1008.8 | 7.1   | 1437  | 1392  | 275  | 24   |
| 0.20   | 130     | 762   | 1 6   | 1080.9 | 7.4   | 3046  | 3092  | 310  | 25   |
| 0 4D   | 150     | 572   | 1 6   | 989 B  | 7.3   | 2455  | 2696  | 387  | 31   |
| 1.00   | 170     | 780   | 1.6   | 1128.1 | 7.1   | 2081  | 2979  | 373  | 30   |
| 1 20   | 190     | 1069  | 1.5   | 1120 6 | 7.3   | 3389  | 3622  | 389  | 3 2  |
| 1:50   | 220     | 1142  | 1 8   | 1272.0 | 1.5   | 3137  | 4358  | 280  | 18   |
| 1 10   | 240     | 1670  | 1.7   | 1306.5 | 7.6   | 5183  | 4913  | 322  | 27   |
| 2 3 0  | 260     | 1448  | 1 6   | 1222 5 | 7.7   | 4808  | 4909  | 196  | 16   |
| 2:50   | 280     | 1621  | 1.8   | 1341.0 | 7.4   | 4725  | 4865  | 144  | 11   |
| 3 15   | 300     | 1397  | 1.7   | 1333 4 | 7.5   | 4449  | 4534  | 8 2  | •    |
| 3.30   | 320     | 1353  | 1.6   | 1310.3 | 7 7   | 4707  | 4910  | 8 2  | 8    |
| 3 50   | 340     | 1410  | 1 9   | 1405.5 | 7.6   | 4439  | 4593  | 128  | 11   |
| 4 10   | 360     | 1477  | 1.9   | 1354.8 | 7 7   | 5625  | 5129  | 113  | 10   |
| 4.30   | 360     | 1545  | 1.6   | 1394.4 | 8.3   | 5048  | 5276  | 104  | 9    |
| 4 5 ū  | 400     | 1621  | 1 7   | 1443 1 | 8.5   | 5237  | 5777  | 124  | 11   |
| 5 10   | 420     | 1256  | 2 0   | 1233.2 | 0.5   | 4477  | 5002  | 79   | 7    |
| 5 3 C  | 446     | 1421  | 1.8   | 1345.7 | 8 5   | 4692  | 5125  | 103  | 10   |
| 5:50   | 460     | 1517  | 1 7   | 1320.7 | 0.4   | 4886  | 5110  | 8.0  | 7    |
| 6 - 10 | 480     | 1096  | 1.6   | 1352.7 | 8.6   | 3414  | 3696  | 70   | 7    |
| 6 30   | 500     | 775   | 17    | 1311.1 | 8.8   | 3368  | 3660  | 6 6  | 10   |

Location. TWO

Test Description TEST NINE Date: DECEMBER 9, 1983

|         | Elapsed | 502   | CO    | COZ    | THC   | NO    | NOI   | AIR1 | AIR |
|---------|---------|-------|-------|--------|-------|-------|-------|------|-----|
| Time    | Time    | (PPB) | (PPH) | (PPH)  | (PPH) | (PPB) | (PPB) |      |     |
| 8 05    | - 5     | 20    | 1.1   | 818 4  | 6.8   | 10    | •     | 309  | 32( |
| 8 25    | 15      | 27    | 1.1   | 769.0  | 8.5   | 391   | 395   | 282  | 28  |
| 8 45    | 3 5     | 758   | 2 2   | 1156 3 | 7.2   | 8270  | 6524  | 267  | 25  |
| 9 05    | 5 5     | 1186  | 2.1   | 1163 3 | 7.0   | 7173  | 7467  | 238  | 17  |
| 9 25    | 75      | 81    | 1 5   | 043.9  | 6.9   | 1553  | 1609  | 345  | 32  |
| 9 45    | 9 5     | 81    | 1 4   | 960 6  | 6.9   | 1218  | 1272  | 449  | 40  |
| 0 - 0 5 | 115     | 9 9   | 1.4   | 953 3  | 7 2   | 1105  | 1170  | 369  | 29  |
| 0 25    | 135     | 357   | 1.7   | 1002.6 | 7.4   | 2704  | 2827  | 322  | 26  |
| € 45    | 155     | 232   | 1 7   | 957.2  | 7.3   | 2192  | 2315  | 416  | 33  |
| 1 35    | 175     | 294   | 1 7   | 977.1  | 7 2   | 2176  | 2321  | 360  | 31  |
| 1.25    | 155     | 538   | 1 7   | 1051.1 | 7.5   | 2807  | 2974  | 322  | 28  |
| 1 - 55  | 225     | 604   | 1.7   | 1156 0 | 8 0   | 3063  | 3203  | 316  | 24  |
| 2.15    | 245     | 682   | 1 7   | 1128 9 | 7 4   | 2962  | 3210  | 218  | 17  |
| 2.35    | 265     | 1073  | 1.8   | 1173.9 | 7.5   | 4294  | 4284  | 214  | 15  |
| 2 - 5 5 | 2 8 5   | 1315  | 1.9   | 1224 9 | 7.5   | 4765  | 4942  | 181  | 14  |
| 3.15    | 305     | 1044  | 1.7   | 1112.8 | 7 5   | 3167  | 3966  | 74   |     |
| 3.35    | 3 2 5   | 1235  | 1.7   | 1302.9 | 7.6   | 3588  | 4596  | 9 6  | 9   |
| 3 5 5   | 345     | 1440  | 1.0   | 1361 3 | 7 5   | 4584  | 5106  | 122  | 11  |
| 4 15    | 365     | 1616  | 1.5   | 1354.3 | 7.9   | 5212  | 5217  | 9 6  | 7   |
| 4 35    | 365     | 1597  | 1.7   | 1453 0 | 8 3   | 4816  | 5947  | 143  | 13  |
| 4 55    | 405     | 1680  | 1 7   | 1510.9 | 8 6   | 5462  | 5629  | 96   |     |
| 5.15    | 425     | 1690  | 1.6   | 1432 0 | 8 7   | 5663  | 6398  | 81   | 7   |
| 5 3 5   | 445     | 1811  | 1.7   | 1449 5 | 8 7   | 5755  | 6535  | 98   |     |
| 5 5 5   | 465     | 1258  | 1.7   | 1325.1 | 8.6   | 4157  | 4611  | 6.8  | 5   |
| 6 15    | 485     | 784   | 17    | 1290.3 | 8 7   | 2453  | 2660  | 6 2  | 7   |
| 6 35    | 505     | 33    | 1.1   | 1015 7 | 1 6   | 3     |       | 262  | 30  |

Location THREE

16 40

516

28

1 0

698.7

1 3

£

5

334

349

Test Description: TEST NINE Date: DECEMBER 9. 1983

802 £Ο Elapsed COZ THC NO NOI AIRI AIRZ Time (PPB) (PPM) (PPH) (PPM) (PPB) (PPB) 55 8.10 ٥ 1 0 148.7 6.7 423 440 379 421 8 30 394 20 2.0 1034.2 6.8 2140 2413 282 255 8 50 423 2.2 1068.0 40 6 8 2136 2374 120 253 9 10 60 352 2 2 1084.6 6.8 1933 2053 235 203 9 30 ₽ 0 325 1.9 1076.6 7 0 1537 1772 365 285 9 50 100 443 2 1 1155.4 7.0 2084 2068 340 314 10 10 434 2 0 1034 4 125 7 6 1930 2098 278 216 10 30 140 432 2.1 1162 5 7.5 269 1967 2255 360 10 50 160 531 2 0 1188 6 7.3 352 2137 2441 335 11 10 100 430 1.9 1107 5 7.0 370 1736 2014 440 11 36 200 648 2 1 1288 1 7.5 2478 2878 346 272 12 00 1332 6 230 640 2.4 7.9 2467 3025 300 251 12 25 256 500 2 3 1322.2 7.4 Z303 2564 227 205 12 40 270 569 1 . 9 1308.1 7 0 2401 2667 175 124 2427 13.00 290 572 1 8 1246 4 7.3 2342 146 117 13 20 488 7.2 310 1.7 1159.4 1762 1804 83 90 7.3 13 40 330 360 17 1128.0 1676 1524 . 9 5 14 00 350 306 2.1 1221 6 7.4 1857 2063 111 106 14 20 176 370 1.6 1159.6 7.9 955 1015 91 64 14 40 190 390 1.8 1108.3 8 0 963 1058 125 120 15 66 410 159 1 5 1212 7 8 . 2 943 998 **9** 5 91 15.20 430 9 2 1 5 1196.9 8.2 482 530 88 73 15:40 450 254 2 0 1423.3 94 8 . 4 1966 2159 88 46 00 470 8 8 1.6 1165.0 8 2 500 557 63 63 16 20 490 67 1 4 1094.3 8 4 86 109 70 77

Location FOUR

Test Description TEST NINE Date: DECEMBER 9, 1983

|         | Elapsed | 502   | CO    | CO2    | THC   | NO    | NOI   | AIRI        | AIR |
|---------|---------|-------|-------|--------|-------|-------|-------|-------------|-----|
| Time    | Time    | (PPB) | (PPH) | (PPH)  | (PPH) | (PPB) | (PPB) |             |     |
| 0:15    | 3       | 195   | 17    | 1007.4 | 8.9   | 1468  | 1835  | 275         | 32  |
| 8 . 3 5 | 25      | 311   | 2.1   | 1115.4 | 6 7   | 1837  | 2210  | 298         | 23  |
| 8 55    | 45      | 426   | 2.1   | 1102 0 | 6 7   | 2073  | 2526  | 312         | 26  |
| 1 15    | 6.5     | 406   | 2 2   | 1173 5 | 7.0   | 2100  | 2378  | 319         | 28  |
| 9 35    | 8.5     | 415   | 2 0   | 1147.1 | 6.7   | 1705  | 1893  | 435         | 37  |
| 9.55    | 105     | 438   | 2 1   | 1199 0 | 7.0   | 1872  | 2188  | 310         | 2 6 |
| C 15    | 125     | 416   | 1.9   | 1130.4 | 7 3   | 1876  | 2072  | 294         | 2 3 |
| 0 35    | 145     | 417   | 1 8   | 1112.0 | 7.7   | 1962  | 2092  | 391         | 2 6 |
| 0 55    | 165     | 320   | 1 6   | 1105.2 | 7 0   | 1505  | 1547  | 374         | 3:  |
| 1 15    | 185     | 204   | 1 9   | 956 5  | 7.0   | 1169  | 1305  | 352         | 3 2 |
| 1 35    | 205     | 207   | 1 7   | 1129 5 | 7 8   | 1328  | 1453  | 368         | 2.9 |
| 2.05    | 235     | 207   | 1 9   | 1131.5 | 7.5   | 1445  | 1555  | 382         | 3   |
| 2 25    | 255     | 118   | 1.9   | 1102.4 | 7.3   | 1215  | 1290  | 162         | 1   |
| 2 : 4 5 | 275     | 142   | 1.9   | 1156 8 | 7.1   | 1463  | 1573  | 139         | :   |
| 3 05    | 2 9 5   | 174   | 2 0   | 1306 6 | 7.3   | 1765  | 1677  | <b>8</b> 5  | 1   |
| 3 25    | 315     | 140   | 1.9   | 1131.7 | 7 3   | 1440  | 1514  | 79          |     |
| 3 45    | 3 3 5   | 132   | 1.7   | 1382 2 | 7 4   | 1244  | 1334  | 119         | 1   |
| 4 05    | 355     | 118   | 1.9   | 1271.7 | 7.4   | 1444  | 1528  | 112         | 1   |
| 4 - 25  | 375     | 105   | 1 7   | 1154.2 | 7.9   | 1010  | 1059  | 8 4         |     |
| 4 45    | 395     | 8.0   | 1.7   | 1372.1 | 8.1   | 886   | 935   | 135         | 1   |
| 5 05    | 415     | 216   | 2 1   | 1305.6 | 8 3   | 1822  | 1919  | <b>\$</b> 7 | ,   |
| 5 2 5   | 435     | 79    | 1.8   | 1201.6 | 8.2   | 954   | 1026  | 9.8         | +   |
| 3 4 5   | 455     | 161   | 2.3   | 1411.7 | 8 5   | 2217  | 2353  | <b>9</b> G  |     |
| 6 - 0 5 | 475     | 67    | 1 8   | 1244.7 | 8.3   | 776   | 022   | 72          |     |
| 6 2 5   | 495     | 6.5   | 1 4   | 1120.1 | 0.6   | 532   | 543   | 70          |     |

Location ONE

Test Description. WAREHOUSE TEST 1

Date: DECEMBER 13, 1983

|        | Elapsed    | 802        | CO    | COZ   | THC        | NO    | NOI   | AIRI | AIR   |
|--------|------------|------------|-------|-------|------------|-------|-------|------|-------|
| Time   | Time       | (PPB)      | (PPH) | (PPH) | (PPM)      | (PPB) | (PPB) |      |       |
| 8 03   | 5          | <b>9</b> 3 | 0 7   | 658.3 | 7 . 6      | ****  | ****  | 398  | 43    |
| 8.15   | 15         | 79         | 0 5   | 631.2 | 7 4        | ****  |       | 371  | 374   |
| 8 25   | 2.5        | 73         | 0 7   | 595.6 | 7.5        |       |       | 380  | 44    |
| 8 35   | 3 5        |            | 0 . 5 | 731.9 | 7.1        |       |       | 413  | 401   |
| 8 45   | 4.5        | 56         | 0.5   | 632 8 | 7.3        |       |       | 445  | 6 2 1 |
| 9 00   | <b>6</b> 0 | 101        | 1 3   | 525 2 | <b>8</b> 0 | 1943  | 1744  | 430  | 5 3 ( |
| 9 10   | 76         | 3 2 8      | 3 6   | 845.8 | 9.7        | 3625  | 4128  | 457  | 5 2   |
| 9 . 20 | 8 0        | 624        | 4 9   | 960.2 | 10.4       | 6375  | 6703  | 390  | 4.1   |
| 9 30   | <b>9</b> 3 | 536        | 4 4   | 849 2 | 10.2       | 5407  | 5503  | 432  | 45    |
| 9 40   | 100        | 591        | 4.7   | 871.8 | 10.4       | 6025  | 6070  | 433  | 44    |
| 9 5 G  | 110        | 588        | 4 5   | 676 7 | 10.2       | 5068  | 6156  | 429  | 44    |
| 0 0 0  | 120        | 861        | 5.3   | 977 2 | 10.6       | 8567  | 8161  | 469  | 4 8   |
| 0 10   | 130        | 436        | 3 4   | 716 8 | 8.4        | 4736  | 4799  | 365  | 40    |
| 0 20   | 140        | 624        | 4 . Z | 822.9 | 9.5        | 6469  | 6664  | 421  | 4.8   |
| 0 30   | 150        | 773        | 4 6   | 879.5 | 9.9        | 5523  | 4830  | 430  | 47    |
| 0.40   | 160        | 730        | 4 8   | 983.6 | 9.9        | 4825  | 4804  | 469  | 54    |
| 0 50   | 170        | 771        | 4 5   | 927.0 | 9 . 6      | 6349  | 7261  | 474  | 5 2   |
| 1 00   | 180        | 788        | 4 5   | 922.3 | 10 0       | 7257  | 8079  | 403  | 44    |
| 11:10  | 19C        | 175        | 17    | 674 0 | 7 9        | 1171  | 1381  | 437  | 5 9   |
| 1 20   | 200        | 131        | 0 7   | 619.5 | 7.7        | 136   | 150   | 528  | 6 6   |
| 11 30  | 210        | 110        | 0 6   | 435 3 | 1.4        | 0     | C     | 471  | 5 9   |
| 1 40   | 220        | 101        | 0.7   | 597.5 | 7 7        | F     | 19    | 459  | 54    |
| 11 50  | 230        | 9 8        | 0 8   | 776 6 | 7 6        | C     | 1     | 2140 | 174   |
| 2.00   | 24 G       | 94         | 0 8   | 705 9 | 7 6        | 0     | 1     | 2231 | 179   |
| 2 10   | 250        | 9 6        | 0 8   | 611.1 | 7.8        | 0     | G     | 2243 | 167   |
| 2 20   | 260        | 103        | 0 7   | 651 2 | 77         | 0     | 2     | 187  | 30.   |

Location THREE

Test Description VAREHOUSE TEST 1

Date: DECEMBER 13, 1983

| AIR | AIRI | NOI   | NO    | THE   | COZ    | CO    | 802        | lapsed | 1     |
|-----|------|-------|-------|-------|--------|-------|------------|--------|-------|
|     |      | (PPB) | (PPB) | (PPM) | (PPM)  | (PPH) | (PPB)      | Time   | Time  |
| 40  | 361  | ****  | ****  | 0.1   | 883.8  | 1 7   | ₿ 5        | 0      | 8:D0  |
| 5 2 | 413  | ****  |       | 7.7   | 848.4  | 0.0   | ● 0        | 10     | 6 10  |
| 41  | 332  | ****  |       | 7 5   | 558 5  | 0 7   | 9 8        | 20     | 8 20  |
| 4.6 | 377  | ***   | ****  | 7 4   | 641.9  | 0 &   | 8.5        | 3 0    | 6:30  |
| 185 | 2164 |       |       | 7.2   | 729 8  | 0 8   | 67         | 40     | 8 40  |
| 6 2 | 537  |       |       | 7 1   | 537 2  | 0.8   | 8.1        | 5 5    | 8:55  |
| 4 2 | 362  | 2730  | 2996  | 8 1   | 799 6  | 1.9   | 239        | 6 5    | 9 05  |
| 44  | 361  | 4469  | 4415  |       | 1067.1 | 2.3   | 614        | 75     | 9 15  |
| 44  | 436  | 4432  | 4418  | 9 D   | 1045 2 | 2 1   | 623        | 8.5    | 9 25  |
| 50  | 451  | 508E  | 5245  | 8 8   | 967.1  | 2 3   | 747        | 9 5    | 9 35  |
| 44  | 389  | 4756  | 4789  | 9.1   | 1000 1 | 2 5   | 668        | 105    | 9 45  |
| 37  | 367  | 4218  | 4564  | 9 5   | 933.7  | 2 7   | 547        | 115    | 9:55  |
| 33  | 371  | 3896  | 3806  |       | 927.2  | 2 2   | 534        | 125    | 10 05 |
| 41  | 416  | 4054  | 3994  | 8.9   | 829 3  | 2 4   | 516        | 135    | 10:15 |
| 44  | 463  | 3103  | 3021  | 8.1   | 769.6  | 1.5   | <b>398</b> | 145    | 16.25 |
| 50  | 446  |       | ***   | 0.2   | 833.9  | 1 4   | 493        | 155    | 10.35 |
| 51  | 448  | 3342  | 3081  | 8.1   | 865.4  | 1.6   | 507        | 165    | 10:45 |
| 4 3 | 363  | 3520  | 2913  | 8.2   | 758 0  | 1.7   | 575        | 175    | 0 55  |
| 5 1 | 435  | 2508  | 2250  | 0.4   | 823.9  | 1.9   | 364        | 185    | 11:05 |
| 5 9 | 474  | 371   | 316   | 7.7   | 574.9  | 1 2   | 124        | 195    | 11.15 |
| 6 5 | 505  | 47    | 30    | 1.5   | 441.2  | 1.0   | 152        | 205    | 11:25 |
| 6 1 | 432  | •     | 2     | 8 1   | 522 🕏  | 0.7   | 9 9        | 215    | 11:35 |
| 119 | 1334 | 5512  | 5629  | 4 . 6 | 831 4  | 2 8   | 668        | 225    | 11:45 |
| 176 | 2186 | 7984  | 6571  | 9.4   | 1134 5 | 4 2   | 598        | 235    | 1.55  |
| 187 | 2246 | 1211  | 1076  | 7.8   | 615.6  | 1 5   | 165        | 245    | 12 05 |
| 128 | 1419 | 4.5   | 14    | 7 6   | 663.1  | 0.5   | 2720       | 255    | 12:15 |
|     | 8.5  |       |       | 7.6   | 554.7  | 0 7   |            | 265    | 12:25 |

Location ONE

Test Description VAREHOUSE TEST 2

Bate: DECEMBER 13. 1983

| AIR | AIR1 | NOI   | NO    | THC   | CO2     | CO    | <b>S</b> O2 | Elapsed | 1      |
|-----|------|-------|-------|-------|---------|-------|-------------|---------|--------|
|     |      | (PPB) | (PPB) | (PPH) | (PPH)   | (PPH) | (PPB)       | •       | Time   |
| 12  | 120  | 1     | 0     | 7 8   | 576 4   | 0 6   | 112         | -3      | 2 25   |
| 13  | 120  | 3133  | 2483  | 1.4   | 853.1   | 3.0   | 704         | 7       | 2:35   |
| 11  | 9 5  | 3642  | 3197  | 10.0  | 985 9   | 4 . 5 | 876         | 17      | 12:45  |
| 8   | 9 2  | 4162  | 3379  | 10.5  | 1110.8  | 5 4   | 739         | 27      | 2 55   |
| 8   | 9 2  | 3915  | 3141  | 10.6  | 1114.5  | 5 7   | 783         | 37      | 13.05  |
| 6   | 72   | 3093  | 3711  | 10.   | 928.4   | 5 3   | 844         | 47      | 3 15   |
| 10  | 79   | 1782  | 1574  | 9.3   | 880.9   | 3 6   | 301         | 57      | 13 25  |
| 7   | 73   | 2263  | 1963  | 10 0  | 927.7   | 3.5   | 550         | 67      | 3 35   |
| 5   | 61   | 2705  | 2382  | 9.6   | 723.0   | 4.1   | 547         | 77      | 3:45   |
| 4   | 47   | 2201  | 1957  | 1.1   | 906.5   | 3.5   | 497         | 9 2     | 4 00   |
| 5   | 6 0  | 9945  | 7703  | 10.2  | 1038 3  | 5 2   | 851         | 102     | 14 10  |
| 5   | 54   | 9573  | 9350  | 10.6  | 1158.8  | 6.2   | 884         | 112     | 4 20   |
| 5   | 5 2  | 7759  | 6904  | 9.8   | \$34.1  | 4 5   | 567         | 122     | 4 30   |
| 4   | 48   | 8094  | 6662  | 9.8   | 1083 3  | 4.7   | 838         | 132     | 4 40   |
| 4   | 51   | 6988  | 6514  | 10 2  | 940.0   | 5.3   | 962         | 142     | 4 50   |
| 7   | 70   | 6977  | 6056  | 9.8   | 989.1   | 4.7   | 749         | 152     | 5 . 00 |
| 6   | 54   | 6306  | 6005  | 9 6   | 936.8   | 6.6   | 633         | 162     | 15:10  |
| 7   | 6.9  | 7698  | 6660  | 9.5   | 40032.4 | 4.7   | 753         | 172     | 5 20   |
| 5   | 57   | 6787  | 5990  | 10 0  | 946.9   | 4.9   | 709         | 182     | 15:30  |
| 5   | 51   | 7309  | 6578  | 10 2  | 923.1   | 4 1   | 757         | 192     | 5 40   |
| 5   | 46   | 8404  | 7616  | 25 6  | 947.0   | 5.5   | 874         | 202     | 15 50  |
| 4   | 5 3  | 0517  | 7615  | 10.1  | 1149 2  | 5.2   | 790         | 212     | 6.00   |
| 5   | 44   | 6350  | 6099  | 10.1  | 932.4   | 4 5   | 657         | 2 2 2   | 16.10  |
| 6   | 6.5  | 9068  | 7036  | 10.9  | 1002.1  | 5.6   |             | 232     | 5 20   |
| 7   | 79   | 7260  | 5858  | 11.0  | 1000.6  | 5.7   | 739         | 242     | 16 3C  |
| 7   | 11   | 10066 | 7037  | 13.0  | 1189.3  | 15.6  | 1237        | 252     | 6:40   |
| 5   | 9.5  | 9619  | 6363  | 13.5  | 1111 6  | 17 6  | 1230        | 262     | 6:50   |

Location: THREE

Test Description WAREHOUSE TEST 2

Date. DECEMBER 13, 1983

|        | Elapsed    | 802   | CO    | COZ    | THC   | NO    | NOI   | AIRI       | AIR |
|--------|------------|-------|-------|--------|-------|-------|-------|------------|-----|
| Time   | Time       | (PPB) | (PPH) | (PPM)  | (PPM) | (PPB) | (PPB) |            |     |
| 2:30   | 2          | 381   | 1.4   | 844.0  | 7.7   | 625   | 940   | • 2        | 104 |
| 2 40   | 12         | 720   | Z . 3 | 998.7  | 0.6   | 1655  | 1936  | 135        | 15( |
| 2:50   | 2 2        | 723   | 2 . 4 | 678.3  | 0.6   | 1966  | 2211  | 94         | 12  |
| 3 00   | 3 2        | .00   | 2 . 9 | 1048.5 | 9.1   | 2448  | 2718  | 73         | 10  |
| 3 10   | 42         | 998   | 2.9   | 1106 6 | 9.1   | 2452  | 3417  | 70         | 8   |
| 3 20   | 5 2        | 415   | 2 3   | 895 8  |       | 2059  | 2302  | ● 0        | 9   |
| 3 30   | <b>6</b> 2 | 467   | 1 0   | 849.1  | 8.7   | 1095  | 1231  | 58         | 8   |
| 3 40   | 72         | 721   | 2 2   | 1005.0 | 8.7   | 2018  | 2434  | 57         | 6   |
| 3 50   | € 2        | ₽23   | 2 . 5 | 1167.7 | 8.9   | 2680  | 2889  | 47         | 4   |
| 4:05   | 97         | 770   | 2 3   | 1004 7 | 8.6   | 4597  | 536D  | 54         | 4   |
| 4 15   | 107        | 769   | 2 . 3 | 945 0  | € . 5 | 4557  | 4855  | 6 1        | •   |
| 4 25   | 117        | # 2 5 | 2.3   | 917.3  | 8 5   | 535B  | 5661  | 5 1        | 5   |
| 4.35   | 127        | 255   | 1.5   | 787.6  | 8.0   | 1709  | 1869  | 24         | 4   |
| 4 45   | 137        | 747   | 1.8   | \$23.8 | 8.2   | 2860  | 3608  | 47         | 5   |
| 4 - 55 | 147        | 793   | 2 . 3 | 1028 6 | 8.3   | 4987  | 5091  | 4 2        | 5   |
| 5.05   | 157        | 789   | 2.4   | 869.4  | 8.5   | 3774  | 4099  | 5 6        | 6   |
| 5 15   | 167        | 674   | 2.2   | 959.5  | 8 4   | 3560  | 4029  | 64         | 5   |
| 5 25   | 177        | 845   | 2.5   | 1014 7 | 8.8   | 4633  | 5574  | <b>6</b> 2 | 7   |
| 5.35   | 187        | 583   | 2.3   | 1110.2 | 8 6   | 4109  | 4643  | 5 2        | 4   |
| 5 45   | 197        | 734   | 2.7   | 1104.Z | 8.9   | 4669  | 5456  | 43         | 5   |
| 5 55   | 207        | 672   | 2 . 5 | 984.0  | 8 2   | 4625  | 5129  | 4 6        | 5   |
| 6 05   | 217        | 672   | 2.1   | 947.6  | 8.5   | 4062  | 4661  | 5 9        | 6   |
| 6 15   | 227        | 916   | 2 6   | 922.4  | 6 9   | 4688  | 5117  | 5 9        | 5   |
| 6:25   | 237        | 873   | 2.4   | 1107.8 | 9.1   | 4577  | 4736  | 75         | 6   |
| 6.35   | 247        | 917   | 4 . 5 | 1068 4 | 0.9   | 3371  | 4726  | 67         | 6   |
| 6 45   | 257        | 892   | 5.0   | 1079.5 | 10.5  | 2693  | 4074  | 96         | 6   |
| 6 55   | 267        | 754   | 6.3   | 1111.5 | 11.3  | 3069  | 4231  | 64         | 4   |

Location: ONE

Test Description: WAREHOUSE TEST 3

Date: DECEMBER 14, 1983

| 1      | Elapsed    | 802   | CO    | COZ    | THC   | NO    | NOI   | AIRI | AIR |
|--------|------------|-------|-------|--------|-------|-------|-------|------|-----|
| Time   | Time       | (PPB) | (PPH) | (PPH)  | (PPH) | (PPB) | (PPB) |      |     |
| 8 15   | 3          | 67    | 0 8   | 774.4  | 10.1  | ;     | 3     | 487  | 74  |
| 8 25   | 13         | 142   | 1 5   | 942.9  | 7.3   | 1046  | 1387  | 153  | 13  |
| 8:35   | 23         | 690   | 4 . 6 | 1321.1 | 9.1   | 7100  | 6966  | 143  | 15  |
| 8 45   | 33         | 606   | 5.2   | 1292.3 | 1.7   | 6002  | 7236  | 107  | 15  |
| 8 55   | 43         | 592   | 4.9   | 1178.4 | 9 5   | 546Z  | 6070  | 217  | 17  |
| 9 05   | 53         | 826   | 5 6   | 1247.5 | 10 3  | 6810  | 6793  | 184  | 17  |
| 9 15   | 6.3        | 797   | 5.7   | 1310 6 | 10.3  | 6632  | 8007  | 159  | 15  |
| 9:25   | 73         | 609   | 5.0   | 1199.5 | 10.2  | 5780  | 7861  | 152  | 14  |
| 9 35   | <b>B</b> 3 | 850   | 5 9   | 1264.7 | 10.8  | 7271  | 9097  | 159  | 15  |
| 9.45   | 9 3        | 701   | 5.7   | 1392.8 | 10.5  | 7591  | 8673  | 133  | 14  |
| 9 5 5  | 103        | 931   | 6 7   | 1506.8 | 11.0  | 9169  | 11122 | 153  | 15  |
| 0.05   | 113        | 764   | 4.8   | 1295.9 | 10.4  | 7157  | 7938  | 164  | 18  |
| 0 15   | 123        | 831   | 6.1   | 1361.9 | 11.1  | 8414  | 10230 | 170  | 15  |
| 0 25   | 133        | 873   | 6 . Z | 1420.6 | 11.2  | 8839  | 10216 | 136  | 14  |
| G . 35 | 143        | 895   | 5 9   | 1332.4 | 11.0  | 7887  | 9696  | 122  | 13  |
| ŭ 45   | 253        | 574   | 4 8   | 1199.5 | 10.3  | 5452  | 6664  | 152  | 17  |
| û 55   | 163        | 730   | 6.5   | 1287 4 | 10.5  | 6129  | 7155  | 162  | 16  |
| 1 05   | 173        | 802   | 4.9   | 1370.7 | 10.4  | 6600  | 7468  | 149  | 14  |
| 1.15   | 183        | 793   | 5.0   | 1306.1 | 10.6  | 5901  | 7386  | 156  | 16  |
| 1:25   | 193        | 821   | 5.9   | 1350.0 | 10.2  | 7219  | 8661  | 146  | 15  |
| 1 35   | 203        | 1008  | 7.1   | 1314.6 | 10.9  | 8739  | 10383 | 130  | 15  |
| 1 45   | 213        | 920   | 6.7   | 1489.8 | 10.6  | 9386  | 9717  | 146  | 17  |
| 1 55   | 213        | 997   | 5 . 3 | 1392.2 | 10.4  | 8315  | 11049 | 149  | 15  |
| 2:05   | 233        | 809   | 5.1   | 1352.5 | 1.8   | 6509  | 8331  | 157  | 16  |
| 1 15   | 243        | 091   | 5 8   | 1390.0 | 10 2  | 6955  | 9059  | 100  | 10  |
| 2 . 25 | 253        | 743   | 5 4   | 1261.0 | 10.8  | 4607  | \$144 | 471  | 17  |
| 2:35   | 263        | 386   | 3 2   | 1025.6 | 9.6   | 1843  | 2337  | 2152 | 176 |
| 2 45   | 273        | 185   | 1.0   | 997.8  | 0.2   | 86    | 125   | 2070 | 177 |
| 2 55   | 283        | 127   | 0.7   | 054.5  | 1.3   | 1     | 0     | 2075 | 189 |

North College

Location. THREE

Test Description WAREHOUSE TEST 3

Bate: DECEMBER 14, 1983

|       | *****          |              |             |              |           |             |              | ******* |      |
|-------|----------------|--------------|-------------|--------------|-----------|-------------|--------------|---------|------|
| Time  | lapsed<br>Time | 802<br>(PPB) | CO<br>(PPM) | CO2<br>(PPM) | THC (PPH) | NO<br>(PPB) | NOI<br>(PPB) | AIRI    | AIR2 |
|       |                |              |             |              |           |             |              |         |      |
| 0:10  | - 2            | 72           | 1.1         | 938 8        | 34.2      | 3           | 2            | 691     | 863  |
| 0.20  | •              | 105          | 0.0         | 787.6        | 7.0       | 2           | 1            | 170     | 280  |
| 8 30  | 18             | 329          | 1.6         | 1010.5       | 7.3       | 1135        | 1479         | 151     | 126  |
| 8 40  | 28             | 741          | 3.0         | 1325 2       | 8.3       | 4200        | 4461         | 149     | 123  |
| 8.50  | 3.8            | 762          | 2.9         | 1249.6       | 8.4       | 4115        | 4684         | 175     | 153  |
| 9 00  | 48             | 636          | 2 . 9       | 1433.0       | B . 4     | 4046        | 4521         | 135     | 152  |
| 9 10  | 5 8            | 707          | 2 . 8       | 1426.8       | 8.8       | 4735        | 4690         | 164     | 161  |
| 9:20  | 6.0            | <b>8</b> 2 5 | 3.1         | 1539 9       | 9.2       | 5634        | 6404         | 138     | 166  |
| ● 30  | 78             | 4197         | 2.4         | 1355.6       | 8.9       | 5268        | 5970         | 178     | 180  |
| 9 40  | <b>₿</b> B     | 709          | 3.0         | 1324 1       | 8 9       | 5547        | 6351         | 166     | 156  |
| 9 50  | 9 6            | 782          | 2.9         | 1257.4       | 9.0       | 4999        | 5794         | 147     | 155  |
| 10:00 | 708            | 677          | 2.7         | 1297.8       | 8.9       | 4455        | 3065         | 170     | 157  |
| 10 10 | 118            | 690          | 2.4         | 1107.8       | 8.7       | 4145        | 4548         | 155     | 176  |
| 10 50 | 128            | 699          | 2.5         | 1239.8       | 9.2       | 3954        | 4403         | 141     | 165  |
| 10 30 | 138            | 690          | 2.8         | 1209.9       | 26.5      | 4112        | 4654         | 141     | 140  |
| 10:40 | 148            | 884          | 2.9         | 1338.5       | 10.8      | 4441        | 5328         | 148     | 141  |
| 10:50 | 15B            | 864          | 2.9         | 1428 7       | 9 0       | 4379        | 5357         | 133     | 145  |
| 11.00 | 168            | 760          | 2.7         | 1397.9       | 8 9       | 4492        | 5150         | 150     | 143  |
| 11 16 | 178            | 720          | 2.7         | 1435.3       | 9.0       | 4570        | 5081         | 152     | 146  |
| 11:20 | 188            | 611          | 2.6         | 1307 3       | 8.5       | 4176        | 4723         | 134     | 179  |
| 11:35 | 196            | 596          | 2 4         | 1215 5       | 8.0       | 4425        | 4981         | 103     | 137  |
| 11.40 | 208            | 652          | 2.5         | 1298.1       | 6.3       | 4272        | 4818         | 109     | 153  |
| 11:50 | 218            | 595          | 2.4         | 1122 8       | 8.2       | 3680        | 4000         | 156     | 190  |
| 12.00 | 228            | 631          | 2.6         | 1278.7       | 0.1       | 3839        | 4282         | 137     | 150  |
| 12 10 | 238            | 870          | 2.6         | 1207.7       | 8.1       | 3649        | 4342         | 147     | 194  |
| 12:20 | 248            | 903          | 2.8         | 1392.8       | 0.6       | 5094        | 5976         | 150     | 174  |
| 12:30 | 2 5 B          | 918          | 2 6         | 1414.2       | 9 0       | 6052        | 6759         | 1414    | 1253 |
| 12:40 | 260            | 201          | 1.4         | 806.2        | 8.4       | 653         | 773          | 2144    | 1784 |
| 12 50 | 278            | 165          | 1.0         | 918.6        | 1.7       | 51          | 80           | 2055    | 1849 |
| 13.00 | 288            | 137          | 0.0         | 900.9        | 7 5       | 2           | 10           | 2174    | 1935 |
|       |                |              |             |              | , ,       | •           |              | ****    |      |
|       |                |              |             |              |           |             |              |         |      |

Location ONE

Test Description: WAREHOUSE TEST 4 Date: DECEMBER 14, 1863

| Time  | Time | SO2<br>(PPB) | CO<br>(PPH) | CO2<br>(PPM) | THC (PPH) | NO<br>(PPB) | NOX<br>(PPB) | AIRI | AIR |
|-------|------|--------------|-------------|--------------|-----------|-------------|--------------|------|-----|
|       |      |              |             | ******       |           | \           | \FFB/        |      |     |
| 13:05 | - 2  | 105          | 0.9         | 822.8        | 7.4       | 3           | 2            | 2139 | 194 |
| 13 15 | •    | 9 3          | 0.9         | 937.7        | 7.4       | 3           | 6            | 228  | 137 |
| 13.25 | 16   | 184          | 1.0         | 1008.1       | 7.2       | 202         | 263          | 117  | 10  |
| 13 35 | 2 8  | 781          | 2.8         | 1350.9       | 8.2       | 3774        | 4316         | 141  | 12  |
| 13 45 | 36   | 835          | 3.3         | 1484.8       | 8.5       | 4998        | 5317         | 138  | 15  |
| 13:55 | 48   | 685          | 3.0         | 1370.5       | 8.3       | 2003        | 4913         | 147  | 16  |
| 14 05 | 58   | 704          | 2.7         | 1447.6       | 8.1       | 4007        | 4812         | 154  | 17  |
| 4 15  | € 8  | 828          | 3.4         | 1320.6       | 0.3       | 4698        | 5441         | 152  | 16  |
| 14.25 | 78   | 1108         | 3.5         | 2521.4       | 8.5       | 5758        | 8425         | 153  | 13  |
| 4 35  | 3 €  | 1077         | 3.5         | 1587.5       | 1.5       | 5445        | 6201         | 135  | 11  |
| 4 45  | 9 6  | 1136         | 4 2         | 1683.2       | . 2       | 5950        | 65 8 3       | 148  | 12  |
| 14 55 | 108  | 1425         | 4 4         | 1731.4       | 9.6       | 7147        | 7843         | 156  | 14  |
| 15:05 | 118  | 1149         | 4 2         | 1741.1       | 9.6       | 6221        | 7214         | 180  | 17  |
| 15:15 | 128  | 1086         | 4.2         | 1689.6       | 1.7       | 5507        |              | 257  | 18  |
| 15 25 | 138  | 1002         | 6 . 4       | 1518.3       | \$ . B    | 5670        | 5881         | 195  | 18  |
| 15 35 | 148  | 729          | 3 . 4       | 1437 0       | 9.3       | 4336        | 5164         | 166  | 15  |
| 15.45 | 156  | 761          | 3.7         | 1419 6       | 9.1       | 4795        | 5597         | 165  | 14  |
| 5 55  | 168  |              | 3 9         | 1551.2       | 8.9       | 3435        | 6323         | 153  | 15  |
| 16 05 | 178  | #04          | 3.1         | 1468.3       | 8.8       | 4642        | 5414         | 153  | 12  |
| 6 15  | 166  | 796          | 3 8         | 1537.5       | 8.0       | 4756        | 5412         | 112  | 11  |
| 16 25 | 198  | 802          | 3.2         | 1454.4       | 9.0       | 4819        | 5548         | 78   | 7   |
| 16 35 | 108  | 1216         | 3 3         | 1540.0       | 9.2       | 5356        | 6128         | 240  | 21  |
| 16 45 | 218  | 1230         | 4 1         | 1691 8       | 9.5       | 5932        | 6345         | 230  | 23  |
| 16 55 | 228  | 1224         | 4 1         | 1761.2       | 9.3       | 617         | 8713         | 225  | 24  |
| 17 05 | 238  | 1103         | 3 7         | 1624 0       | 9.1       | 4656        | 4896         | 204  | 16  |
| 17 15 | 248  | 928          | 2 \$        | 1578 9       | 9.3       | 4406        | 5311         | 206  | 22  |
| 17:25 | 258  | 135          | 0.5         | 764.0        | 1.0       | 1           | 0            |      | 17  |

Location. THREE

Test Description. VAREHOUSE TEST 4

Bate: DECEMBER 14, 1983

| Time | (PPB)                                                                                                                        | (PPH)                                                                                                                                                                                                   | (PPH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 C CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    |                                                                                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (PPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (PPB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (PPB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| •    | 156                                                                                                                          | 0.1                                                                                                                                                                                                     | 942.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13   | 142                                                                                                                          | 0.1                                                                                                                                                                                                     | 008.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 23   | 715                                                                                                                          | 3.6                                                                                                                                                                                                     | 1137.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 . 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3 3  | 1016                                                                                                                         | 6.0                                                                                                                                                                                                     | 1523.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 43   | 730                                                                                                                          | 5 8                                                                                                                                                                                                     | 1461.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5 3  | 683                                                                                                                          | 6.3                                                                                                                                                                                                     | 1426.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 . 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 63   | 776                                                                                                                          | 5 8                                                                                                                                                                                                     | 1566.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 73   | 583                                                                                                                          | 5.7                                                                                                                                                                                                     | 1399.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ● 3  | 633                                                                                                                          | 5 7                                                                                                                                                                                                     | 1420.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9.3  | 881                                                                                                                          | 6.3                                                                                                                                                                                                     | 1478.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 103  | 589                                                                                                                          | 5.4                                                                                                                                                                                                     | 1310.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 113  | 570                                                                                                                          | 5.1                                                                                                                                                                                                     | 1404.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 123  | 676                                                                                                                          | 5 . 2                                                                                                                                                                                                   | 1239.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 133  | 635                                                                                                                          | 4.6                                                                                                                                                                                                     | 1247.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 143  | 591                                                                                                                          | 4 . 8                                                                                                                                                                                                   | 1237.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 153  | 744                                                                                                                          | 4.9                                                                                                                                                                                                     | 1429.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 163  | 877                                                                                                                          | 6.4                                                                                                                                                                                                     | 1486.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 173  | 624                                                                                                                          | 5.1                                                                                                                                                                                                     | 1204.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 103  | 869                                                                                                                          | 5.3                                                                                                                                                                                                     | 1329 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 193  | 6 6 6                                                                                                                        | 5.1                                                                                                                                                                                                     | 1404.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 203  | 860                                                                                                                          | 6.0                                                                                                                                                                                                     | 1360.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 213  | 626                                                                                                                          | 4.5                                                                                                                                                                                                     | 1288.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 223  | 602                                                                                                                          | 4 . 6                                                                                                                                                                                                   | 1302.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 233  | 603                                                                                                                          | 3.7                                                                                                                                                                                                     | 1246.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 243  | 571                                                                                                                          | 3.9                                                                                                                                                                                                     | 1283.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 253  | 433                                                                                                                          | 3.5                                                                                                                                                                                                     | 1187.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 53<br>63<br>73<br>63<br>92<br>103<br>113<br>123<br>133<br>143<br>153<br>163<br>173<br>183<br>203<br>213<br>223<br>233<br>243 | 53 683<br>63 776<br>73 583<br>63 633<br>63 633<br>63 691<br>103 589<br>113 570<br>123 676<br>133 635<br>143 691<br>153 744<br>163 877<br>173 624<br>183 666<br>203 860<br>213 626<br>223 602<br>233 603 | 53     683     6.3       63     776     68       73     583     5.7       83     633     5.7       82     891     6.3       103     589     5.4       113     570     5.1       123     676     5.2       133     635     4.6       143     891     4.8       153     744     4.9       163     877     8.4       173     624     5.1       183     869     5.3       193     666     5.1       203     860     6.0       213     626     4.5       223     603     3.7       243     571     3.9 | 53       683       6.3       1426.8         63       776       68       1586.5         73       583       5.7       1399.5         63       633       5.7       1420.6         92       881       6.3       1478.9         103       588       5.4       1310.6         113       570       5.1       1404.6         123       676       5.2       1239.7         133       635       4.6       1247.5         143       891       4.8       1237.6         153       744       4.9       1429.9         163       877       6.4       1486.6         173       624       5.1       1284.8         183       869       5.3       1329.6         183       866       5.1       1404.8         203       860       6.0       1360.3         213       626       4.5       1288.4         223       802       4.6       1302.3         243       571       3.8       1283.3 | 53       683       6.3       1426.8       9.8         63       776       6.8       1566.5       10.3         73       583       5.7       1399.5       9.7         83       633       5.7       1420.6       10.2         92       891       6.3       1478.9       10.5         103       589       5.4       1310.6       10.4         113       570       5.1       1404.6       10.4         123       676       5.2       1239.7       10.8         133       635       4.6       1247.5       10.6         143       891       4.8       1237.6       10.6         153       744       4.9       1429.9       10.3         163       877       8.4       1486.6       10.7         173       624       5.1       1284.8       9.9         183       869       5.3       1329.6       9.8         193       666       5.1       1404.9       10.1         203       860       6.0       1360.3       10.7         213       626       4.5       1208.4       10.2         223 <td< td=""><td>53       683       6.3       1426.8       9.8       8437         63       776       6.8       1566.5       10.3       10978         73       583       5.7       1399.5       9.7       6970         63       633       5.7       1420.6       10.2       6714         82       691       6.3       1478.9       10.5       7680         103       388       5.4       1310.6       10.4       5613         113       570       5.1       1404.6       10.4       4833         123       676       5.2       1239.7       10.8       5565         133       635       4.6       1247.5       10.6       4456         143       691       4.8       1237.6       10.6       5702         153       744       4.9       1429.9       10.3       6442         163       877       8.4       1486.6       10.7       7877         173       624       5.1       1204.8       9.9       6319         183       869       5.3       1329.6       9.8       7469         183       869       5.3       1329.6       9.8</td><td>53       683       6.3       1426.8       8.8       8437       8665         63       776       6.8       1386.5       10.3       10978       11015         73       583       5.7       1399.5       9.7       8970       8372         83       633       5.7       1420.6       10.2       6714       7879         92       891       6.3       1478.9       10.5       7680       8333         103       589       5.4       1310.6       10.4       5613       6390         113       570       5.1       1404.6       10.4       4833       6089         123       676       5.2       1239.7       10.8       5565       6660         133       635       4.6       1247.5       10.6       4456       5561         143       891       4.8       1237.6       10.6       5702       6540         153       744       4.9       1428.9       10.3       6442       7612         163       877       8.4       1486.6       10.7       7877       9895         173       624       5.1       1284.8       8.9       6319       7618<!--</td--><td>53       683       6.3       1426.8       9.8       8437       9665       152         63       776       6.8       1586.5       10.3       10978       11015       151         73       583       5.7       1399.5       9.7       8970       8372       189         83       633       5.7       1420.6       10.2       6714       7679       133         93       881       6.3       1478.9       10.5       7680       8333       146         103       589       5.4       1310.6       10.4       5613       8390       150         113       570       5.1       1404.6       10.4       4833       6089       163         123       676       5.2       1239.7       10.8       5565       6660       105         133       635       4.6       1247.5       10.6       4456       5561       203         143       691       4.8       1237.6       10.6       5702       6540       180         153       744       4.9       1429.9       10.3       6442       7612       143         163       877       6.4       1486.6</td></td></td<> | 53       683       6.3       1426.8       9.8       8437         63       776       6.8       1566.5       10.3       10978         73       583       5.7       1399.5       9.7       6970         63       633       5.7       1420.6       10.2       6714         82       691       6.3       1478.9       10.5       7680         103       388       5.4       1310.6       10.4       5613         113       570       5.1       1404.6       10.4       4833         123       676       5.2       1239.7       10.8       5565         133       635       4.6       1247.5       10.6       4456         143       691       4.8       1237.6       10.6       5702         153       744       4.9       1429.9       10.3       6442         163       877       8.4       1486.6       10.7       7877         173       624       5.1       1204.8       9.9       6319         183       869       5.3       1329.6       9.8       7469         183       869       5.3       1329.6       9.8 | 53       683       6.3       1426.8       8.8       8437       8665         63       776       6.8       1386.5       10.3       10978       11015         73       583       5.7       1399.5       9.7       8970       8372         83       633       5.7       1420.6       10.2       6714       7879         92       891       6.3       1478.9       10.5       7680       8333         103       589       5.4       1310.6       10.4       5613       6390         113       570       5.1       1404.6       10.4       4833       6089         123       676       5.2       1239.7       10.8       5565       6660         133       635       4.6       1247.5       10.6       4456       5561         143       891       4.8       1237.6       10.6       5702       6540         153       744       4.9       1428.9       10.3       6442       7612         163       877       8.4       1486.6       10.7       7877       9895         173       624       5.1       1284.8       8.9       6319       7618 </td <td>53       683       6.3       1426.8       9.8       8437       9665       152         63       776       6.8       1586.5       10.3       10978       11015       151         73       583       5.7       1399.5       9.7       8970       8372       189         83       633       5.7       1420.6       10.2       6714       7679       133         93       881       6.3       1478.9       10.5       7680       8333       146         103       589       5.4       1310.6       10.4       5613       8390       150         113       570       5.1       1404.6       10.4       4833       6089       163         123       676       5.2       1239.7       10.8       5565       6660       105         133       635       4.6       1247.5       10.6       4456       5561       203         143       691       4.8       1237.6       10.6       5702       6540       180         153       744       4.9       1429.9       10.3       6442       7612       143         163       877       6.4       1486.6</td> | 53       683       6.3       1426.8       9.8       8437       9665       152         63       776       6.8       1586.5       10.3       10978       11015       151         73       583       5.7       1399.5       9.7       8970       8372       189         83       633       5.7       1420.6       10.2       6714       7679       133         93       881       6.3       1478.9       10.5       7680       8333       146         103       589       5.4       1310.6       10.4       5613       8390       150         113       570       5.1       1404.6       10.4       4833       6089       163         123       676       5.2       1239.7       10.8       5565       6660       105         133       635       4.6       1247.5       10.6       4456       5561       203         143       691       4.8       1237.6       10.6       5702       6540       180         153       744       4.9       1429.9       10.3       6442       7612       143         163       877       6.4       1486.6 |

The state of the s

Test Description WAREHOUSE TEST 5 Date: DECEMBER 15, 1983

| All | AIRI       | NOI   | NO    | THC          | CO2    | CO    | 802   | lapsed | 5      |
|-----|------------|-------|-------|--------------|--------|-------|-------|--------|--------|
|     |            | (PPS) | (PPB) | (PPM)        | (PPH)  | (PPH) | (PPB) | Time   | Time   |
| ;   | 383        | 367   | 389   | 14.9         | 720    | 9 7   | 117   | -27    |        |
| 11  | 109        | 565   | 492   | 6.7          | 659.9  | 0 7   | 133   | -17    | 8 10   |
| 1   | ● 5        | 168   | 161   | 6.6          | 895.7  | 0.6   | 103   | -7     | B 20   |
| •   | 313        | 2600  | 2166  | 7.5          | 824 0  | 1.6   | 972   | 3      | 8:30   |
|     | 59         | 5338  | 4529  | 8.2          | 1027.0 | 2 2   | 1802  | 13     | 8 40   |
|     | 6.9        | 5216  | 4595  | 8.4          | 1039.1 | 2 0   | 1668  | 23     | B 50   |
|     | 8 8        | 5736  | 4006  | 8.5          | 1114.1 | 2 3   | 1681  | 33     | 9 00   |
|     | 91         | 6021  | 5234  | 8 5          | 1142 1 | 2 4   | 1986  | 43     | 10     |
|     | 108        | 0073  | 7775  | <b>9</b> . 0 | 1443.0 | 3.4   | 3488  | 53     | 9 20   |
|     | 116        | 7045  | 6397  | 8.6          | 1488.2 | 2 8   | 2567  | 63     | 9 30   |
| 1   | 122        | 7098  | 6658  | 8.7          | 1318.2 | 2 6   | 2545  | 73     | 9 40   |
|     | 79         | 4868  | 4924  |              | 1381.3 | 2.8   | 2390  | 8 3    | 9 50   |
|     | 101        | 5048  | 4598  | 8 . 8        | 1215.0 | 2.6   | 2268  | 9.3    | 0 00   |
|     | <b>9</b> 5 | 3979  | 3754  | 8.6          | 1007 5 | 6 5   | 1449  | 103    | 0:10   |
|     | 8.8        | 4390  | 3947  | 8.5          | 1160.7 | 2.1   | 1965  | 113    | 0 25   |
|     | 100        | 3582  | 3051  | 8.6          | 1006.4 | 1 9   | 1303  | 123    | 0:30   |
|     | 8 2        | 3896  | 3465  | 0.4          | 1026 0 | 1 9   | 1464  | 133    | 0 40   |
|     | 73         | 5560  | 5001  | 8 7          | 1185.6 | 2.3   | 2048  | 143    | 0 50   |
|     | 54         | 5411  | 4382  | 8.5          | 1139 6 | 2 5   | 1946  | 153    | 1.00   |
|     | 58         | 4950  | 4343  | 1.1          | 1044 6 | 2.3   | 1611  | 163    | 1 10   |
|     | 54         | 7162  | 6404  | 1.4          | 1319.5 | 3.0   | 3380  | 173    | 1 - 23 |
| 3   | 71         | 5986  | 4842  | 9.1          | 1155.2 | 3.0   | 1336  | 183    | i 30   |
| 14  | 1563       | 2305  | 2037  | 8.5          | 817.9  | 2.0   | 391   | 193    | 1 40   |
| 17  | 2249       | 271   | 214   | 7.6          | 701 9  | 0.9   | 150   | 203    | 1.50   |
| 11  | 2277       | 34    | •     | 7.3          | 691.6  | 0.8   | 103   | 213    | 2 00   |

Location. THREE

Test Description: WAREHOUSE TEST S Date: DECEMBER 13, 1983

| AIF | AIRI       | NOI   | NO    | THC   | CO2    | CO    | <b>S</b> 02 | lapsed | I      |
|-----|------------|-------|-------|-------|--------|-------|-------------|--------|--------|
|     |            | (PPB) | (PPB) | (PPM) | (PPH)  | (PPH) | (PPB)       | Time   | Time   |
| 1   | 103        | 1913  | 1613  | 7.3   | 793.7  | 1.5   | 506         | -22    | 8 05   |
| 11  | 113        | 178   | 146   | 6.5   | 712.7  | 0.7   | 101         | -12    | 8.15   |
| 7   | 78         | 4463  | 3935  | 7.5   | 865.3  | 2 7   | 753         | - 2    | 8:25   |
| •   | 79         | 7418  | 8791  | 8.5   | 1000.6 | 3.8   | 1322        | •      | 6.35   |
| •   | 73         | 6885  | 6275  | 9 0   | 962.6  | 3.4   | 1242        | 16     | 8 . 45 |
| :   |            | 8320  | 5142  | 8.8   | 1011.2 | 3.3   | 1104        | 28     | 8 55   |
|     | 101        | 5165  | 4445  | 8.1   | 1032.9 | 2.7   | 1003        | 38     | 9 65   |
| 7   | 103        | 4053  | 4329  | 9.0   | 973.4  | 2 . 3 | 1011        | 4.8    | 9:15   |
|     | 107        | 5188  | 4370  | 9.2   | 904.8  | 3 6   | 1102        | 56     | 9 . 25 |
| •   | 121        | 5703  | 4085  | 1.4   | 1038.2 | 3.0   | 4302        | 6.8    | 9.35   |
| •   | 107        | 6835  | 5973  | 9.9   | 1144.3 | 3.8   | 1522        | 78     | 45     |
| 4   | 8.6        | 6414  | 5377  | 9.6   | 1022.1 | 3.6   | 1462        | ● 8    | 9:55   |
| 4   | 8 5        | 6875  | 6149  | 9.9   | 1035.9 | 3 . 8 | 1490        | 98     | G . 05 |
| :   | 56         | 5961  | 5200  | 9.6   | 976.1  | 3.3   | 1419        | 106    | 0:15   |
| 4   | 65         | 4753  | 3726  | 1.4   | 1001.8 | 3.0   | 998         | 118    | 3 25   |
|     | 62         | 4933  | 3739  | 10.4  | 902.2  | 2.8   | 1000        | 128    | 0:35   |
|     | <b>9</b> D | 4561  | 4003  | 2.4   | 888 6  | 2.7   | 1067        | 138    | 0 45   |
|     | 41         | 5007  | 3606  | 1.4   | 1045.3 | 3.4   | 1149        | 148    | 0:55   |
| :   | 44         | 5862  | 3783  | 9 5   | 1040.1 | 3.1   | 1239        | 158    | 1 05   |
| (   | 49         | 4773  | 4124  | 9 . 2 | 882 1  | 2.7   | 1067        | 168    | 1 15   |
| 1   | 74         | 2692  | 2253  | 8.8   | 860.3  | 1.9   | 515         | 178    | 25     |
| 6   | 504        | 2152  | 1835  | 8 . 2 | 973.0  | 1.6   | 882         | 188    | 1 35   |
| 17  | 2244       | 126   | 96    | 7.6   | 697.0  | 0 . 8 | 159         | 196    | 1.45   |
| 17  | 2230       | 0     | D     | 1 2   | 585.4  | 0.6   | 8.5         | 208    | 1 55   |

Location: ONE

Test Description: WAREHOUSE TEST 6 Date: DECEMBER 15, 1983

| 1     | Desgail | 802   | CO    | COZ    | THC   | NO    | MOI   | AIRI | AIR2 |
|-------|---------|-------|-------|--------|-------|-------|-------|------|------|
| Time  | Time    | (PPB) | (PPH) | (PPM)  | (PPM) | (PPB) | (PPB) |      |      |
| 12.05 | -18     | 110   | 0.6   | 754.D  | 7.4   | 3     | 11    | 1110 | 1136 |
| 12.15 | - 6     | 142   | 0.5   | 817.2  | 7.4   | 10    | 2 2   | 67   |      |
| 12:25 | 2       | 2007  | 4.0   | 1173.9 | 9.6   | 5360  | 6548  | 5 9  | 9 3  |
| 12 35 | 12      | 2196  | 5.1   | 1193.8 | 10.0  | 7577  | 8068  | 48   | 74   |
| 12 45 | 22      | 1415  | 4.2   | 1095.1 | 10.2  | 5130  | 6648  | 8 6  | 104  |
| 12 55 | 32      | 9 C & | 3.0   | 969.9  | 9.6   | 3385  | 4541  | 127  | 119  |
| 13 05 | 42      | 1258  | 3 2   | 1091.2 | 9.7   | 4030  | 5392  | 113  | 97   |
| 13.15 | 5 2     | 1583  | 3.2   | 1134.8 | 10.0  | 6062  | 6030  | 111  | 9 5  |
| 13 25 | 6 2     | 1723  | 3 8   | 1184.5 | 10.1  | 7286  | 0551  | 130  | 100  |
| 13.35 | 72      | 2198  | 5 . 6 | 1499.6 | 11.1  | 9733  | 11376 | 130  | 106  |
| 13.45 | 8 2     | 1777  | 4.8   | 1311.1 | 10.9  | 7949  | 9757  | 121  | 9 6  |
| 13:55 | 9 2     | 2047  | 5 . 5 | 1404.9 | 11.5  | 9161  | 10332 | 158  | 124  |
| 14 65 | 102     | 2298  | 5 . 8 | 1501 7 | 11.9  | 10221 | 11677 | 154  | 128  |
| 14 15 | 112     | 1920  | 5 . 2 | 1220.  | 11.7  | 8079  | 8154  | 122  | 6 1  |
| 14.25 | 122     | 1359  | 3.9   | 1032.0 | 10.6  | 5884  | 6295  | 137  | 103  |
| 14 35 | 132     | 1067  | 2.6   | 914.6  | 9.6   | 3814  | 4652  | 133  | 113  |
| 14 45 | 142     | 2368  | 4.4   | 1215.5 | 10.9  | 8975  | 10501 | ₽2   | 8 3  |
| 14:55 | 152     | 2259  | 5 0   | 1351.9 | 11.2  | 10283 | 11442 | 110  | 8 9  |
| 15:05 | 162     | 1670  | 5.1   | 1212.5 | 11.2  | 7976  | 9395  | 98   | 9 2  |
| 15.15 | 172     | 2063  | 5 . 8 | 1502.7 | 11.9  | 12400 | 12984 | 117  | 9.3  |

Location: THREE

Test Description: VAREHOUSE TEST 6

Bate: DECEMBER 15, 1983

| :      | Elapsed    | 502   | CO    | COS    | THC   | NO    | NOI   | AIRI | AIR |
|--------|------------|-------|-------|--------|-------|-------|-------|------|-----|
| Time   | Time       | (PPB) | (PPH) | (PPH)  | (PPH) | (PPB) | (PPB) |      |     |
| 12:10  | -13        | 106   | 0.5   | 710.3  | 7.4   | 1     | 2     | 104  | 686 |
| 12:20  | - 3        | 905   | 1.2   | 956.8  | 7.4   | 980   | 831   | 8.3  | 105 |
| 12.30  | 7          | 1663  | 2 2   | 1062.4 | 8.3   | 2978  | 3108  | 56   | 71  |
| 12:40  | 17         | 1586  | 1.9   | 1215.0 | 8.7   | 3047  | 3497  | 56   | 9 : |
| 12.50  | 27         | 882   | 1.3   | 928.9  | 8.1   | 1099  | 2104  | 8.6  | 117 |
| 13:00  | 37         | 939   | 1.3   | 873.4  | 8.3   | 1949  | 2169  | 95   | 107 |
| 13 10  | 47         | 1350  | 1.4   | 1037.9 | 8.6   | 3492  | 2747  | 109  | 100 |
| 13 20  | 57         | 1362  | 1 4   | 1054.4 | 8.2   | 2558  | 2788  | 117  | 9 ( |
| 13.30  | 67         | 1567  | 1.4   | 1035.0 | 8.6   | 2750  | 2920  | 148  | 110 |
| 13 40  | <b>7</b> 7 | 1643  | 1.3   | 1078.8 | 8.5   | 3081  | 3348  | 144  | 110 |
| 13.50  | 87         | 1013  | 1.0   | 978.0  | 8.3   | 2024  | 2244  | 136  | 111 |
| 4 00   | 97         | 1092  | 1.1   | 949.0  | 8.8   | 2043  | 2377  | 144  | 117 |
| 14.10  | 107        | 1227  | 1.3   | 1030.6 | 9.0   | 2162  | 2584  | 140  | 111 |
| 4 20   | 117        | 1145  | 1.2   | 1059.4 | 9.3   | 2211  | 2652  | 126  | 104 |
| 14.30  | 127        | 1117  | 1.2   | 912.1  | 8.6   | 2283  | 2420  | 146  | 123 |
| 4:40   | 137        | 908   | 1.1   | 974.6  | 8.7   | 1827  | 2159  | 117  | 111 |
| 14.50  | 147        | 1544  | 1.4   | 1085.0 | 9.0   | 2772  | 3068  | 101  |     |
| 5.00   | 157        | 1457  | 1.2   | 1065.3 | 9.0   | 2662  | 2012  | **   |     |
| 15.10  | 167        | 1112  | 1 2   | 991.4  | 9.0   | 2251  | 2308  | 110  | 0.  |
| 5 : 20 | 177        | .00   | 0.1   | 987.9  | 8.9   | 1481  | 1809  | 143  | 10  |

The sales and the sales are

APPENDIX C
STATISTICAL ANALYSIS

- Marine Contract

# NOTES ON THE STATISTICAL ANALYSIS

The following description summarizes the approach taken in the statistical analysis of the continuous air monitoring data.

1) The variances of the data on each forklift were compared by use of a standard "F" test with the following calculation:

Calculated F = 
$$\frac{\sigma_1^2}{\sigma_2^2}$$

The calculated F value was compared with the table value at a 0.05 level of significance for the appropriate degrees of freedom.

2) When results of the first test indicated similar variances (p>0.05), the apparent difference in air monitoring data between the two forklifts was tested by using a pooled variance to calculate a standard error and Student "t" value according to the following calculations:

Pooled variance = 
$$\sigma_p^2 = \frac{\sum (x_1 - \bar{x}_1)^2 + \sum (x_2 - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

Standard error = 
$$\sigma_{\bar{x}_1} - \bar{x}_2 = \sqrt{\frac{\sigma_p^2}{n_1} + \frac{\sigma_p^2}{n_1}}$$

Student t = 
$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\bar{x}_1 - \bar{x}_2}$$

Waster Tolk Street

The calculated t value was compared with the table value for the appropriate degrees of freedom. The comparison was made at a 0.05 level of significance for a one-tailed test.

3) When results of the first test indicated different variances (p<0.05), the difference in air monitoring data between the two forklifts was tested by use of a modified Behrens-Fisher t test.

Standard error 
$$\sigma_{\bar{x}_1}^2 - \bar{x}_2 = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Blevens-Fisher 
$$t = t' = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sigma \bar{x}_1 - \bar{x}_2}$$

The calculated t´value was compared with the table value for the appropriate degrees of freedom. The comparison was made at a 0.05 level of significance for a one-tailed test.

The Property of the Control of the C

| REPORT DOCUMENTATI                                                                                                | ON PAGE                                                                                                         | READ INSTRUCTIONS BEFORE COMPLETING FORM                       |  |  |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| 1. REPORT NUMBER                                                                                                  | PD PULL 1772                                                                                                    | 3. RECIPIENT'S CATALOG NUMBER                                  |  |  |
| Measurement of exhaust em diesel-powered forklifts d in ammunition storage maga                                   | 5. TYPE OF REPORT & PERIOD COVERED<br>Final Report<br>Sept. 1983 to May 198<br>5. PERFORMING ORG. REPORT NUMBER |                                                                |  |  |
| III dilamani bron bootage imaja                                                                                   |                                                                                                                 | PN 3611                                                        |  |  |
| 7. AUTHOR(*)<br>Leslie J. Ungers                                                                                  |                                                                                                                 | B. CONTRACT OR GRANT NUMBER(*) DAAK70-83-C-0133                |  |  |
| PERFORMING ORGANIZATION NAME AND ADD<br>PEDCO Environmental, Inc.<br>11499 Chester Road<br>Cincinnati, Ohio 45246 | RESS                                                                                                            | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |  |  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                           | 12. REPORT DATE May, 1984                                                                                       |                                                                |  |  |
|                                                                                                                   | elvoir Research and Development Center<br>t. Belvoir, Virginia 22060                                            |                                                                |  |  |
| 14. MONITORING AGENCY NAME & ADDRESS(11 di                                                                        | Iferent from Controlling Office)                                                                                | 18. SECURITY CLASS. (of this report) Unclassified              |  |  |
|                                                                                                                   |                                                                                                                 | 154. DECLASSIFICATION/DOWNGRADING                              |  |  |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                                       |                                                                                                                 | <u> </u>                                                       |  |  |
| Approved for public releas<br>Distribution unlimited                                                              | e                                                                                                               |                                                                |  |  |
| 17. DISTRIBUTION STATEMENT (of the abstract on                                                                    | stered in Block 20, il different fro                                                                            | en Report)                                                     |  |  |
| 18. SUPPLEMENTARY NOTES                                                                                           |                                                                                                                 |                                                                |  |  |

#### 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Diesel engine
exhaust pollutants
Carbon monoxide
Carbon dioxide
Nitric oxide
Sulfuric acid
Nitrogen oxides (NO<sub>X</sub>)

Nitrogen dioxide
Nitric oxide
Sulfuric acid
Sulfur dioxide
Total hydrocarbons

20. ABSTRACT (Carthue as reverse obte H necessary and identify by block number)

Indoor air quality was monitored in Stradley-type ammunition magazines during the use of diesel-powered forklifts. The monitoring took place during storage and handling operations. The primary test vehicles were a Still forklift powered by a Deutz (F3L912W) diesel engine and a Hyster forklift powered by a Perkins (4.2032) diesel engine. Both breathing zone (personal) and continuous monitoring data were collected during the operation of the two vehicles. Total suspended particulates, polycyclic

DD 1 JAN 79 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

#### 20. (continued)

aromatic hydrocarbons, carbon monoxide, carbon dioxide, sulfur dioxide, nitrogen dioxide, and oxides of nitrogen, sulfuric acid as total sulfates, total hydrocarbons, and odorants were monitored. Test results indicated that the impact of diesel exhaust on magazine air quality depends largely on the operations being performed. The warehousing operations presented the greater potential risk to the health and safety of Army personnel. Nitrogen dioxide was the only exhaust component of those measured that presents a potentially serious health risk. A statistical test of the air quality data collected during warehousing operations indicated that the operation of the Still/Deutz vehicle is significantly cleaner than that of the Hyster/Perkins vehicle. Additional testing is proposed to better quantify personnel exposures and magazine air quality during the use of the Still/Deutz vehicle

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

- Francisco de la companya della companya de la companya della com

